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1.0 OVERVIEW

-~ This report constitutes the first phase of research conducted by
Axiomatix wherein our aim was to derive, evaluate and compare various detec-
tor structures whose purpose is to intercept a spread-spectrum communication
transmitter. The transmitter under surveillance employs a variety of modu-
lation/spreading/transmission techniques which are invariably assumed to
emit the message-bearing signal in deep background noise or interference.
Thus, the challenging task of the intercepting detector is to reveal as best
he can any transmission of the unfriendly spread waveform in the presence

of a strongly obscuring noisy environment.
Naturally, the degree of success achieved by the interceptor when de-

tecting the presence of the communicator's spread signal depends on the amount
of information available to him regarding the structure of that signal. At one
extreme, the interceptor's most fortunate situation would be to acquire the
spreading code itself ("crack" the code). This being toc demanding, he must
settle for less, such as approximate knowledge of the signal's carrier cente:

frequency, code rate, code epoch, spreading bandwidth, etc., or a subset thereof.

At the other extreme, he might know almost nothing*; in which case, he could
resort to a simple energy discriminator device ("radiometer") since it is, on
many occasions, a Tow-SNR asymptotically optimal detector. In this report, our
main interest is to investigate the possibility that the interceptor could do
better by optimally processing whatever information is available to him between
the two extremes cited above.

The detectability of the primary candidates for low-probability-of-
intercept (LbI) waveforms, such as direct-sequencel(DS). frequency-hopping (FH),
time-hopping (TH) and their hybrids, is customarily related to two factors:

(1) performance level of the interceptor's detector whose only function is to
monitor? the communicated messages apd, (2) amount of signal processing (i.e.,
complexity) associated with such p@kformance. Thus, the exploitability of a
spread-spectrum waveform is measured in terms of the complexity required of
the interceptor's receiver, so that it can perform such surveillance, as well
as in terms of the level of its power spectral density (PSD) and the resulting
probability of intercept.

*
Approximate spectral band location is a minimum prerequisite for any
interceptor.

fIntercepting/jamming combinations would also be of interest at a more
advanced stage of study.
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In subsequent sections, it will be shown that the detectability
(exploitability) of a spread signal is greatly dependent on the interceptor's
knowledge regarding the form of both the waveform and the interference. In
other words, one should know not only the spreading format used (plus, possib-
1y, some other parameters*), but it is also very helpful to be able to identi-
fy the kind of background noise or interference involved. Although most of
this report deals with white Gaussian noise as the dominant form of (omni-
present) interference, a case is made in the final section about the impact
of nonwhite (random tones, in particular) interference. It will be shown in
Sections 3 through 5.1 that, when white noise is the only deterrent, the gains
achieved by intelligent processing of the received waveform can vary from
modest to significant (always as compared to the performance of a radiometer),
depending on the scenario at hand. However, when random interfering tones
are present and a DS or a hybrid FH/DS is detected, those gains become impres-
sive (many tens of decibels, for example). For details, see section 5.2.

In searching for those structures which perform the aforementioned
tasks, we start from the optimal solutions, as derived from applying the opti-
mal likelihood-ratio rule. The results assume a good deal of knowledge about
the signal parameters (although never the spreading code itself) and could thus
become rather academic in most practical situations. Furthermore, they typically
suffer from the common symptom of prohibitive implementational complexity. Thus,
it is important to consider suboptimal structures and evaluate their relative
Toss with respect to the (unattainable) optimal performance. This has indeed
been the spirit which permeated the present work.

The report is organized as follows: In section 2, we classify the
various receivers and briefly lay the theoretical groundwork for evaluating the
forthcoming detector structures. In Sections 2. 4 and 5, we develop the theory
for DS, TH and FH signals, respectivelyT. This is also the order by which the
relative gains from sophisticated receivers seem to increase when faced by white
noise. In particular, a two-reception, synchronous, coherent DS detector can
result in a gain of up to 4.5 dB in signal-to-noise ratio (SNR) above the radi-
ometer. Each of the three aforementioned features of this detector contributes
approximately 1.5 dB; however, each also imposes strenuous conditions on the

3
See Section 2 for a detailed discussion.

fLet us note that the hybrid FH /DS of section 5.2 can also be thought
of as a DS signal in colored interference.
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system implementation. This kind of modest relative benefit must be
attributed to the "noise-1ike" appearance of a high-rate DS code, which makes
it hard to distinguish from wideband thermal noise. On the other hand, TH or
FH can look spectrally different from DS, so that higher gains can be expected;
this is documented in Sections 4 and 5. We note, however, that those gains are
typically associated with excessive complexity; in which case, implementation
becomes the cardinal issue. This prompted us to investigate suboptimal, but
still very efficient, schemes which are suggested by today's technology (e.g.,
real-time autocorrelation devices). The application of such novel ideas in
Section 5 has established conditions (both by analysis and simulation), under
which one can anticipate significant-to-impressive gains over the radiometer,
even in the presence of white noise. It is shown in Section 5 that a proper
measure of performance improvement (defined in section 5.1) is proportional to
YHZ, where YH is the hop SNR of an FH system. The proportionality constant de-
pends on algorithmic parameters, but is independent of the assumed tactical
scenario. Thus, by properly translating TH into physical parameters (i.e.,
transmitter/intercepter distance, signal power, antenna gains, etc.), one can

arrive at certain threshold values in the proximity of which the signal becomes

highly detectable. Although this would be the bottom 1ine of a global inter-
ception analysis, this task will not be undertaken here, as it is highly sce-
nario dependent.

In conclusion, the findings of this report can serve as broad analyt-
ical guidelines for the determination and evaluation of a variety of detectors
in the context of LPI interception. They also serve to motivate a further pur-
suit of techniques which, in light of today's (and tomorrow's) technology,
emerge as very appealing, sophisticated and promising alternatives to the sim-
plistic solutions of the past.
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2.0 DETECTOR CLASSIFICATION AND PERFORMANCE MEASURES

In this section, we first classify a variety of receivers which an
interceptor could employ to detect the presence of a wideband (spread) signal
imbedded in white and/or nonwhite interference. Furthermore, we discuss some
approximate measures of performance upon which the assessment for any detec-
tor's merit is based. We should note here that such measures give a quanti-
tative feeling of what can be expected from certain detectors but do not pro-
vide any indication of the structure's implementational compliexity, which is
definitely an important parameter. Therefore, a total evaluation of the sys-
tem effectiveness should incorporate that as a separate, but indispensable,
consideration.

The classification attempted here is summarized in Figure 2.1. Wide-
band detectors can first be classified as optimal or suboptimal. We term "op-
timal" those structures which result from a straightforward application of the
generalized 1ikelihood ratio theory to this problem and invoke a number of as-
suptions regarding the signal structure. For instance, optimal solutions typi-
cally assume knowledge of certain parameters (code rate or hopping rate, SNR,
carrier frequencies, etc.) and average over the unknown ones (timing epochs,
true hopping or code sequences, etc.). Since, however, optimal structures are
often hard to implement, one resorts to "suboptimal" solutions whereby either

one (or more) assumptions are removed or certain "atypical" nonlinearities, such
as the gn cosh(.) function, are substituted by simpler ones as, for instance, a
square-law device.

A second classification results from the nature of the spread-
spectrum signal for which the intercepting device is designed, so it can be
a DS, FH, TH or hybrid detector. Also, DS and TH detectors can be coherent
or noncoherent, depending on whether or not the carrier phase is known. FH
detectors are assumed to be noncoherent from hop to hop due to the nature
of the communicating channel and the transmitter wideband FH synthesizers.

The presence or absence of timing (epoch) information about the spread-
ing code distinguishes detectors as synchronous or asynchronous. It is clear
that timing is initially unavailable since the detector does not even know if
the signal is there; hence, asynchronous structures naturally attract more prac-
tical interest. However, synchronous and/or coherent detectors will also be
considered--not only because they provide useful upper bounds in performance--but
also because of the conceptual possibiiity of improved detector structures,
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aided by the recursive estimation of pertinent parameters [8]. Furthermore, by

quantizing the continuous-epoch uncertainty region into an adequate finite num-
ber of points, matched-detector structures can be devised that are synchronized
to each of those levels and whose outputs are combined to yield the final deci-
sion variable. Thus, since the maximum code-epoch uncertainty equals a chip
time*, one concludes that good nonsynchronous detectors can be constructed from
combinations of a few synchronous ones. More discussion on this topic is pro-
vided in later sections.

Finally, we classify the detectors according to whether they expect to
operate in the presence of white (and typically Gaussian, such as thermal noise)
or nonwhite interference. The maximum-1ikelihood approach renders itself to the
first case most easily, while its formulation is cumbersome for the second. Ac-
cordingly, the theory is fairly mature for AWGN interference, while it is still
at the exploratory level for scenarios which call for more complicated interfer-
ence forms.

Let us now briefly discuss analyt .al ways for measuring performance
in the present context. It is well known [3] that, under the common detection-
performance criteria (most notably, the Neyman-Pearson philosophy), generalized
1ikelihood ratios yield optimal hypothesis-testing solutions, and performance is
measured by the resulting pair of detection and false-alarm probabilities (PD,
PFA)' Furthermore, it can be shown that, in many cases of practical interest,
the overall 1ikelihood ratio (LR) can be expressed as the product of individual
LR's due to the statistical independence of successive code chips (random DS
code) or hopping slots (TH or FH). When the true model for the problem does not
allow for such assumptions (as in the case of a random, but fixed, carrier phase),
the resulting LR is too complicated for either analysis or implementationT. The
performance of such decision schemes is assessed by bounding arguments (see the
following sections) so that the product LR can always be thought of as the ana-
lytical cornerstone. Since the log-1ikelihood ratio (LLR) is not only theoret-
ically equivalent, but also more convenient to implement than an LR (it turns
products into sums), it will serve as our point of departure.

The number of terms entering the summation of the LLR is typically
large--it equals the total number of chips (DS) or time slots (TH) or frequency
slots (FH) observed. Therefore, it is reasonble to conclude, via a central-limit

—
This clearly assumes a purely random code sequence for which a full
chip time shift corresponds to another realization of the same stochastic process.

In addition, it can be argued that the superposition of random data
on DS or TH, such as PSK modulation, invalidates the notjon of a constant carrijer
phase.
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type of argument, that the distribution of the resulting LLR is approximately
Gaussian under either hypothesis. This constitutes the basic assumption upon

\ which performance is derived in this report. In other words, the pair (PD,PFA)
- is expressed in terms of the Gaussian integral function

‘ Q(x) = El_;[exp{-zz/Z} dz (2-1)

: and its inverse Q'l(-); furthermore, using the approximation that the LLR pos-
- sesses the same variance under either hypothesis, it is easily shown that per-
_"l formance is quantified by the distance d, defined as

d = Q'I[PF,;] - Q“l[po] (2-2)

which is a function of the decision rule and the system parameter values.
Peterson et al [3, section 4.9] have invoked the Gaussian assumption

about the LLR in order to show that d2 is equal to the difference of the means

of the LLR under the two hypothesis (hence, the notion of distance) and is also

equal to its variance. Most important, d can be related to the original product

J LR A via*

o & = wnfe{a|? n}) - n 1+ var{a|Ho}) (2-3)

where the second equality results from the fact that "{AlHO} = ] for every LR.
Therefore, (2-3) measures the performance of any LLR*, which could include arbi-
trary memoryless nonlinearities (indeed, the optimal ones). Since many of them
are hard to implement, however, it is of interest to examine the penalty in per-
formance incurred when going from optimal to suboptimal decision rules just by
simplifying (or approximating) those nonlinearities. Clearly, the suboptimal

2 ¢ rules are also associated with some distance d, as per (2-2), which we shall
denote by dappr (approximate) as opposed to the 'uxact" distance dex derived
from (2-3). The other approximations nonwithstanding, the difference between <
dappr and dex should signify the loss paid for implementational simplicity. In N

¢ addition, dappr will serve as the yardstick when comparing the approximate rules

resulting from various other assumptions (or the lack thereof).
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3.0 DETECTION OF DIRECT-SEQUENCE SIGNALS IN THE PRESENCE OF AWGN

In this section, we consider and analyze wideband detectors for DS
waveforms. It will be assumed throughout that the receiver has knowledge of
the carrier frequency and code rate and that the code is biphase modulating
the carrier. For the carrier phase, the two possibilities of it being known
(coherent detection) and unknown (noncoherent detection) are examined separately
in sections 3.1 and 3.2, respectively. A common assumption in both of these
sections is that the detectors are synchronous, i.e., the code chip-timing
epoch is known. In most practical situations, this is rather unrealistic; the
synchronous results can then be thought of as upper bounds on the performance
of any asynchronous detector. Furthermore, by quantizing the continuous-epoch
uncertainty region into an adequate finite number of points, matched-detector
structures can be devised which are synchronized to each of these levels and
whose outputs are combined to yield the final decision variable. More discus-
sion on the cost of asynchronism is given in section 3.3. Section 3.4 discusses
some gains derived from combining two independent receptions, ranks the perfor-

mance of the aforementioned detectors and compares them to that of the radiometer.

In order to introduce some notation, let the high-rate, tl-valued
random spreading code c(t) be represented by

c(t) = i Ch p(t - nTc - eTc) (3-1)

n=-w

where p(t) is a unit pulse of duration T, seconds and {cn}’_‘. is a sequence of
independent, identically distributed) (iid) random variables (rv's), with
Pr{cn = 1} = Pr{cn = -1} = 0.5. Furthermore, the chip epoch is modeled by the
rv €, uniformly distributed over (0,1). The waveform observed by the detector
is therefore given by

s,fz's c(t) cos(ugt + ¢) + n(t) (Hy)

r(t) = ) (0<tgT) (3-2)

n(t) (Ho)
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where S, wg and ¢ are the average signal power, carrier radian frequency and
carrier phase, respectively, under Hl, and n(t) is bandpas: AWGN with one-sided
power spectral density (PSD) of NO W/Hz. The cobservation time is T seconds,
which we assume to be an integer multiple of the chip time, i.e., T = NTC; N a
positive integer. Such an assumption is the least restrictive since, in prac-
tice, N is generally a large number (of the order of hundreds or higher). How-
ever, a somewhat stronger restriction is embedded in (2), namely, the assumption
that, under hypothesis Hl’ the signal is present during the whole observation
interval. That excludes the possibility of the signal either starting or ending
at any random time in (0,T). Still, such a formulation is important because it
provides meaningful and fairly simple comparative conclusions which (a) would
otherwise be obscured by mathematical complexities and, (b) can be argued to
extend to more general models.

In terms of the above notation, a synchronous detector implies that ¢
is identically zero, while a coherent one means that ¢ is known. The detector
for which ¢ is unknown but constant over the observation interval (0,T) will be
called carrier noncoherent*. For computational purposes, we also consider the
fictitious chip-noncoherent detector, where phase is assumed to change randomly
from chip to chip. Although this is totally unrealistic, it is discussed here
because its readily derived performance serves as a very useful lower bound to
the performance of the optimal, carrier-noncoherent receivers, which are diffi-
cult to analyze.

3.1 Synchronous Coherent Detectors

When both the random phase ¢ and random chip epoch ¢ are assumed known,
the detector is asked to perform the following composite hypothesis testing prob-
lem: Decide between the alternatives H0 and Hl’ where

/S c(t) + ny(t
SO AR () (0 < t<NT) (3-3)

ny(t) (Ho

Hypothesis H1 is composite because it contains all possible patterns that the
code can assume in NTc seconds. Although we consider only random codes (in

*This clearly assumes that the observation duration is well within
the coherence time of the spread-spectrum channel.

CLACE o)

PRI \d VA

AR ut P EIARY

. %f..f

.%5‘7‘.-‘_"-‘4

‘Y

%

e e]@ >




' 10

which case, there are exactly M = 2N such patterns), some of the steps below

N L | would also be valid for determministic codes. The subscript I in nI(t) indi-
\ cates that only the inphase component of the noise contributes, with a flat
o two-sided PSD of Ny/2 W/Hz. At this point, we should emphasize that the prob-
‘ lem formulation is reminiscent of, but not identical to, the M-ary communica-
ﬂ tion problem of detecting the presence of one of M = 2N possible waveforms em-

bedded in noise. In the latter case, we know a priori that one of the signals
is present, but we don't know which one it is. In the current case, our only
interest is detecting the presence of any one of the M equilikely candidate

j L] waveforms without identifying it.

Starting with classical well-known results about detectors designed
to minimize the probability of error [3], it follows that the optimal detector
performs a generalized 1ikelihood ratio threshold comparison. Specifically,
Xe the generalized likelihood ratio is

2N flr(t)H,,c(t);0<t <T) H
AC(E) = S (r( )|Hqc4(t) ) h "
B f(r(t) |Hg) Hy

(3-4)

where f(r(t)lHi) indicates the conditional 1ikelihood functional of the hypo-
thesis H;, given the observation r(t);0 < t < T, and c;(t) is the ith pattern
® out of the 2N total possible. For the case of AWGN, the generalized 1ikelihood
' ratio in (3-4) reduces to the following form:

: N
4 -N 2 NT
€ A(r(t)) Eﬂz—NY—C} S exp{-z—'lS / € r(t) ci(t) dt%

=1 Mg

/‘

\

) N

s - exp{-Nyc} 2 2/8 N H1

' € - exp S orici 2 A (3-5)

AR N i1 370 Ry ©

) where

.

‘ ST,

: Yo T W (3-6)
. ¢ No
I
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is the predetection (or chip) SNR, €4 is the jth chip of the ith pattern, and

L Xy Caw W - . o \ . A “~Tne -t I T U PETY S S O - Pat .ty
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d @ r is given by
!
. A T
j ry = [ € r(t) dt (3-7)
A il
‘e (3-1)T,
>
\ Y
\ The expression in (3-5) can be further simplified using certain symmetries and
2 identities. Indeed, it is shown in Appendix A that (3-5) is expressible as
T
r N Hy
g ACr(t)) = T['exp{-yc}cosh (gﬂ'f—g rj> 2 Mg (3-8a)
: =1 0 H
« or, equivalently,
3
L
. H
: N 3
b - 275
; £na(r(t)) -Nyc + 12:1 £n cosh (—NE rj> H<0 in Aq (3-8b)
L
We note that (3-8) could have been derived directly based on the statistical in-
b dependence of successive chips and the AWGN (see [6]). The somewhat aifferent
7 approach preferred here, however, is more easily generalized to models where
R g successive chips are not independent (c.f. section 3.2).
» A structure implementing the rule (3-8) is shown in Figure 3.1 with
f(x) = &n cosh(x). Its operation is as follows: A time-synchronized, chip-by-
< chip, coherent integration of the received waveform r(t) results in a sequence
¢ of rv's rys each of which is separately processed by the memoryless nonlinear-
Y
v ity f(-), then summed over the desired length of N chips to produce the decision
X statistic. Let us notice that the optimal f(-.) is an even function, which can be
N be interpreted as the receiver's attempt to compensate for his lack of knowledge
< regarding the sign of each integrated code chip.
The mean under H, of the random argument of the fn cosh(+) function
in (3-8b) is ZYC, which is also its variance under HO. Therefore, for typical
5 predetection SNR values below -10 dB or so, the approximation £n cosh(x) = x2/2
(¢ is applicable; in which case, (3-8) reduces to the approximate (suboptimal) rule
i
4 &
)
‘
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" A= r-j2 3 Ag' (3-9)
2 i=1 ﬁo
:EZ Since the aforementioned approximation of the gn cosh(x) function becomes in-
' R creasingly tight as x + 0, it follows that (3-9) is asymptotically optimal as
Yo 0.

Within the theoretical framework of Section 2, the performance of
(3-9) is easily derived. The mean and variance of A' are given by (for proof,
 J see Appendix B)

Mg = MNT(F* 7e 8) (k=0,1) (3-10a)
l and
varfe it = N(NGTC)2 (3% 2 v 8) (3-10b)
d respectively, where §,; is the Kronecker delta
1, k=l
6 * {0 o (3-10c)

P NN

Therefore, PD and PFA are related by

- o o n

el
N

. Q-ll?fﬂ' a Ny,

N PD = qQ (3-11)

L. +

< Ye

3 ;

~ with :

L c. ;

* a = /27 ; b = 4‘_] (Synchronous coherent detector) (3-12a) :

o

- Since byc is typically much less than 1, (3-11) can be combined with (2-2) to f
€ yield .

dappr‘ za N Ye (3-12b)
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*. We note that performance is dictated by the product W Yoo which is typical

\ of schemes employing post-detection integration. In contrast, detection of a

‘i‘ known waveform would involve the factor /Nyc (see section 3.5); the losses in

. performance due to the generalized test (since the signal pattern is unknown)

. for low values of SNR are evident by comparison.

" Equation (3-11) has been plotted in Figure 3.2 for various values of

~ .
N N and PFA' In terms of the overall observation time T and the null-to-null .
- spread-spectrum bandwidth Hs = ZT(:'1 Hz, (3-12) can be rewritten to establish
- v the required CS/NO)req in order to achieve the performance level dappr as '
3 S 1 " I;Is !
s ('N'a) - (’2’) T dappr‘ (3-13) :
L req !
« 1
- On the other hand, the distance d, for the exact rule (3-8) can .
. also be derived. Let ¥j 225 rj/No. Under Hy, y; is a zero-mean Gaussian

. rv with variance o 2 . Zyc. Using the fact that g{cosh(yj)} = exp{oyzlz} in
T conjunction with (3-8a) and (2-3) results in ;
o

o) d,, = N In cosh(Zy) (3-14) )
2 ex Y \
4 '
’. For small x, £n cosh(x) = x2/2, which, upon substitution in (3-14), verifies

\ that dex -> dappr of (3-12) as Y. + 0. In conclusion, approximate rule (3-9) )
o is well suited for the low-predetection SNR range of interest. :
o K
< K
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3.2 Synchronous Noncoherent Detectors

Let us now relax the unrealistic assumption that the carrier phase of '
the DS waveform is known by the interceptor, but still retain the assumption of
a known code epoch. When the observation interval is smaller than the coherence
time of the channel, the carrier phase ¢ can be modeled as an rv, uniformly dis-
tributed in (0,27), resulting in the aforementioned carrier-noncoherent system.
In addition, a fictitious chip-noncoherent system will be considered whereby the
phase is assumed to change randomly from chip to chip. The reason for discussing
such a totally hypothetical signal is twofold: (1) it can be shown that the
optimal decision rule for a carrier-noncoherent system is asymptotically equiva-
lent to the decision rule of the chip-noncoherent system (hence, their corre-
sponding performances also coincide asymptotically) as the SNR Ye decreases to
zero; (2) more important is the fact that the performance of the chip-noncoherent
structure is easily obtained (within the Gaussian approximation), in sharp con-
trast to the unwieldy analysis of the optimal carrier-noncoherent system. Thus,
the (unobtainable) performance of the latter can be nicely bracketed between the
(obtainable) performance of the former, which serves as an asymptotically tight
lower bound*, and the upper bounding performance of the synchronous coherent de-
tector in the previous section (3.1).

Let us first consider a carrier-noncoherent system. Under the usual
narrowband assumption wg >> 2n/T, the resulting decision rule is

N H
2 1
A = exp{- Nyc} 121 Io(gﬂ':)—g Ri) H%O Ay (3-15)

S

where Io() is the zeroth-order modified Bessel function and R; is the ith corre-
lation envelope

Ry = e’ * e . i=1,2,...,2% (3-16)

*
Since a chip-noncoherent detector utilizes less statistical informa-
tion than a carrier-noncoherent detector, it is inferior to the latter for all
SNR values.
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In (3-16), K
§ ¢ (3-17) "’

€&, = 2 Ta, Cij - L€ asliQ - :

ai j=1 aj iJ a 'i h

with 4

, iT wat
i ¢ vz fJ € r(t) Cc_’s 0%l a4t 5 j=1,....N (3-18)
rQ; (j-l)Tc sin wgt

As mentioned, the optimal rule (3-15)-(3-18) is hard to mechanize.
Instead, suppose that the received waveform r(t) is represented under H1 by

r(t) = V2§ i c; p(t -J‘Tc)cos(wot + o)+ n(t) (3-19)

j=-w

where {¢j} is a sequence of statistically independent uniform phases, thus model-

ing the aforementioned chip-noncoherent system. It is then straightforward to
show (see Appendix C) that the optimal decision rule is

N 2/% ) !
_Nyc + jzl n I0 (-NB- rJ. H(EJ Ag (3-20)

where 'y is the envelope of the jth chip

X
M r. = r +r (3-21)
-J J Ij Qj
-4C ,
3 with rlj,er as per (3-18). An implementation of (3-20) is shown in Figure 3.3.
'Ej Again, under the small-argument approximation ano(x) z x2/4, it follows that
F (3-20) reduces to the suboptimal rule
qe N
H1
\ po= 3 e 2y (3-22)
2 j=1 J Ho
2
te
A
g
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N

We note that the rule (3-22) is formally identical to (3-9), the difference ;

being that here r. corresponds to a noncoherent chip integration.

Although the distance dex for the exact rule (3-20) can be derived
(see Section 4 for a closely related case), we shall be content with dappr of
(3-22) in view of the 1ow-SNR conclusions of the previous section. Using the
Rayleigh (under Hy) or Rician (under Hy) nature of ri» it is easily shown that
(see Appendix D)

e{rjzluk} - (NOTC)E +y Gkﬂ (3-23a)

var{rjlek} = (NOTC)Z[E'+2YC Gk;] (3-23b)

Combining (3-22) and (3-23) and employing the Gaussian assumption results in
(3-11) (or (3-12b)), where now

a=1;b=2 (Synchronous chip-ncncoherent detector)  (3-24)

Equivalently,

S 1 S
N. ® = Ji dappr (3-25)
( o)req 2 P

which reveals a loss factor of /Z, or 1.5 dB with respect to the coherent detec-
tor. This is the penalty paid for the lack of coherency. Furthermore, since
the performance of the carrier-noncoherent system is bracketed between the co-
herent (upper bound) and the chip-noncoherent (lower bound) ones that differ by
only 1.5 d8, it is concluded that any implementational complexity beyond that

of rule (3-22) is not justified from a practical standpoint.
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3.3 Asynchronous Detectors

We shall now explore the possibility of removing the rather
stringent requirement of epoch synchronization. In other words, we shall
derive optimal and suboptimal structures that do not assume knowledge of
the chip epoch ¢ (see (3-1)); furthermore, we shall estimate the (approxi-
mate) penalty in performance compared to the previously discussed synchron-
ous detectors. For reasons which were explained before, attention will be
given to totally coherent and totaily (chip) noncoherent detectors. These
are the chip-by-chip processors which readily render themselves to asyn-
chronous alternatives.

In subsection 3.3.1, Continuous-Epoch Uncertainty, we discuss struc-
tures which utilize analog filters in order to perform averaging over the con-
tinuous rv ¢, uniformly distributed in (0,T.). Thus, the final system output,
which is a continuous function of time, provides, after proper sampling, the
theoretically optimal answer to the generalized (i.e., average over ¢) likeli-
hood ratio test for discriminating between Ho and Hl' The derivation presented
here follows some basic steps from Krasner's work [4] in a somewhat more simpli-
fied and expanded manner. In subsection 3.3.2, Quantized-Epoch Uncertainty, we
explore suboptimal structures that result from a quantization of the epoch un-
certainty region and are much easier to implement than the optimal detector.

In particular, the two-point quantization scheme is discussed and analyzed in
detail. It will be argued that different interpretations of that analysis
could serve as upper and lower bounds on the performance of the optimal contin-
uous uncertainty detector in subsection 3.3.1.

3.3.1 Continuous-Epoch Uncertainty

For the sake of clarity, let us consider the coherent case first.
Most of the following steps carry over without change to the chip-noncoherent
decision rule (3-22) as well.

The starting point is tne coherent 1ikelihood ratio (3-8a), addition-
ally conditioned on the random offset ¢. Following a procedure identical to
the development of section 3.1 yields the expression

N ~ N
A(r(t)]e) = ;EE [fosh(rj(e)) exp{-yc}] = exp{-Nyc} ;EE cosh(ry(e))  (3-26)




for the aforementioned conditional likelihood ratio. In equation (3-26), rj(e)
indicates the coherent integration of the received waveform r(t) in the jth chip
interval, as per (3-7), where the integration l1imits have now been adjusted to
reflect the conditioning on an assumed value of the offset e:

iT +¢
ri(e) = fJ ¢’ r(t) dt
(j-l)Tc+e

In the following, the constant factor exp{-NYc} will be denoted by KA, for sim-
plicity. Let us note that the final decision rule (3-8b) for the synchronous
case results immediately from (3-26) for ¢ = 0 once we rewrite the latter in
the equivalent form

N N
A(r(t)|e) = Ky exp{ln(}];]; cosh (rJ.(e)))} = K, exp{ > fn cosh(rj(e))} (3-28)

j=1

and use the monotonicity of the function exp(<}. It will soon be clear that,
from an implementational viewpoint, (3-28) is more convenient to work with
than {3-26).

The overall conditional 1ikelihood ratio ACr(t)) is formed by aver-
aging the conditional one, i.e., A(r(t)|e), with respect to ¢, which is assumed
uniformly distributed in (0,7 ):

T N
A(r(t)) 8. M(r(t)]e) = K, f ¢ exp{'zl £n cosh(rj(e))} de

0 J=
TC N ch+e
Ky exp z £n cosh / r(t)dc}Vde (3-29)
=1 (j-l)Tc+e

Although the above decision rule is optimal from a theoretical stand-
point, it is not immediately clear exactly how it can be implemented in prac-
tice without resorting to various approximations, such as quantizing the range
of €, etc. One possible way will now be illustrated which employs appropriate
analog filters and devices.
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First, let us define the waveform y(t) as

t
y(t) = / r(z) dr (3-30)
t-T,

The above function is easily mechanized as the output corresponding to an input
r(t) of a linear filter matched to the chip square pulse

1,0<¢t< Tc

p(t) = { (3-31)

0 , otherwise

(see (3-1)) since, indeed,

t L)
f r(t) dr = / r(t) p(t-t) dr
t1 %

It is clear from (3-29) that the argument of the £n cosh(.) function is just
the value of y(t) at time t = jT.te. Thus, we can rewrite (3-29) as

a(r(t)) = K, / Te :él £n cosh(y(ch+e»}de (3-32)
0

The next step is to somehow create the summation in the exponent of (3-32) as
the outcome of a linear-filtering operation whose input is £n cosh(y(t)). Such
a sum of equispaced (by T.) samples of the input function arises at the output
f(t), with proper sampling, of a filter whose impulse response is a sequence
of equispaced delta functions:

h(t) Nfl t -mT (3-33)
= 6 - -
m=0 ( m C)

'''''

3
1
‘4
b
2
J
L
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Indeed, when the output waveform
L] N'l
f(t) = h(t) ® fn cosh(y(t)) = / mZO a(r-mTc) 2n cosh(y(t-t))dt
) (vC ) (3-34)
= gn cosh{y(t - mT -34
m=0 o)
of such a filter is sampled at t = ch+ e, 1t equals
N-1
f(kTgke) = 3 tn cosh (y((k-m)T_+e)) (3-35)
or, changing variables j=k-m,
>
F(kT +¢) = n cosh(y it +e) (3-36)
(kTere) jok-N+1 (Imere)

Clearly, then, the exponent of (3-32) arises exactly when k=N, i.e., when f(t)
is sampled at t = NTC+E.

Before proceeding, let us note that an impulse response as per (3-33)
corresponds to a tapped-delay-line filter whose (N-1) delay elements are T, sec-
onds each (see Figure 3.4(a)). Such an implementation, however, bears the re-
striction that it is not recursive, i.e., higher values of N require more delay
elements. An alternative structure is shown in Figure 3.4(b) which employs a
single delay element in the feedback path. Ideally, such a filter would provide
an infinite series of delta functions, thus alleviating the need to specify N.
Typically, however, stability considerations dictate the insertion of a gain
a €1 in the feedback Toop; the available maximum N is then practically restric-
ted "y the infinte-impulse-response (IIR) filter memory.

Returning to (3-36) and combining it with (3-32), one recognizes that
the desired 1ikelihood ratio statistic is, in fact, the time average of the
function exp{f(t)} over the interval [NTC,(N+1)TC]. Again, such an average is
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created by sampling at t = (N+1)TC the output of a filter whose impulse

{ ® response is a unit pulse, Tc seconds long. Figure 3.5 provides a possible im-
~ plementation of such a "moving-average" filter. Finally, the detector compares .
i the output sample at t = (N+1)Tc to a threshold and produces a decision. The :
N overall scheme is depicted in Figure 3.6. X
; ® Several observations can be made here. First, a practical scheme
. would avoid the £n cosh(+) and exp(-) nonlinearities since they are hard to .
5 construct and replace them by a single square-law device operating on y(t), :
N i.e., the following approximation of (3-32) could be used: .
N @
‘ ‘e
. TC N 2 \
e Alr(t)) = K, >y (T, + ) |de (3-37) -
X- 0 =1
L "
A LS
!" The basis for such a simplification is the previously used fact that, for low
N SNR, y(t) is a small quantity; in which case, the approximations £n cosh y(t) = v
* 1+ yz(t) and exp(f(t)) = 1 + f(t) can be employed. Furthermore, let us note K
8 ‘o
X that the chip pulse shape need not be rectangular. An arbitrary (but chip-time .
) ¢ limited) shape can be accommodated by designing the very first filter of Fig- )
. ure 3.6 to be matched to that particular shape. A1l other elements remain the ]
'ﬁ same. :
j Finally, it can be shown that the arguments and detector structures \
j @ of this subsection apply directly to the chip-noncoherent case, provided that |
the first nonlinearity £n cosh(-) of Figure 3.6 is replaced by £n Io(-) and N
N the initial chip-matched filtering at the input of that figure is done nonco- X
.; herently. This can be accomplished by the noncoherent chip-envelope detector
¢ comprising the predetection integration of Figure 3.3, once the inphase and )
“ quadrature integrate-and-sample type filters are replaced by analog matched {
" d
3 filters with a continuous-time output. A
.J l:
n 5
(€ 3.3.2 Quantized-Epoch Uncertainty )
; A step towards reducing the complexity of the previous detector is ?
3 to quantize the epoch uncertainty region of Tc seconds into a (small) finite X
1 number of alternatives, i.e., points. This is equivalent to assuming that the K
(! epoch rv can take on only those values and accordingly develop the optimal or
« near-optimal detector for the resulting finite hypothesis problem. The quality K
>
3 :
N ;
o :
« )
: ;
‘
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(as well as the complexity) of such an approximation will obviously increase
with the number of points considered. It will soon be clear, however, that the
simplest case of only a two-point quantization, which will be the one we analyze
herein, provides quite an adequate performance with respect to the ideal (syn-
chronous) detector; thus, higher level quantization and complexity might even be
undesirable from a practical viewpoint. In addition, a suitabla interpretation
of this analysis can simultaneously serve as a bounding technique (upper and
lower) for the optimal, continuous-epoch uncertainty detector of the previous
subsection, whose exact analysis is intractable.

Let us assume that the two points comprising the epoch uncertainty*
are eg and €1/2° corresponding to the offsets €e=0 and €= 1/2 in (3-1). That
is to say, the incoming code chips are likely to arrive either in perfect syn-
chronization (¢ = 0) or half a chip off (e= 1/2) with respect to the local chip
timing reference, and they are both equally probable to occur. A variation of
the optimal-likelihood ratio (3-28) for the coherent case, adapted for the above
scenario, would imply that the decision rule should be

1 N N H,
(?) exp)jgl £n cosh (rj (eo))z + exp 3;1 £n cosh(rj (51/2))$ exp;-NYczs pg (3-38)
0
where
JT 3T +T {2
rj(eo) = / ¢ r(t)dr ; r(el/z) = / ¢ c/ r(t)dz (3-39)

(3-1)7, (J-1)T +T [f2

Clearly, the chip-noncoherent detector would form the envelopes rj in place of
the coherent integrations (3-39); otherwise, the development is analogous.

We should note here that the two NTc-second observation intervals for
the two corresponding exponential terms of (3-38) are slightly off by half a
chip. For large N, such "edge effects" are insignificant and will be neglected
in the following!.

1So. at this point, the epoch uncertainty is assumed to be discrete
by nature, not by quantization.

TFor that purpose, small adjustments will be made for convenience
without explicit acknowledgement.
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The familiar smail SNR approximation applied to (3-38) yields the
suboptimal ruyle:

2 y 2 "
ry(e0) * 2 T3 E1/2) R Ao (3-40)
o Ho

-
1}

Let 51 and ry2 indicate the coherent integrations during the first and second
halves of the jth chip interval, respectively, i.e.,

(§-1/2)T iT
f € rlx)dr rig f ¢ r(t)de (3-41)

(3-1)T, (3-1/2)7,

Then (3-40) can be rewritten in terms of (3-41) as

H
N N 1
' - A 2 2 > 1 -
A' = z r.. +r + r., +r 2 A (3-42a)

or, expanding terms, neglecting edge effects (i.e., substituting r“il 1 with
"121)’ and dividing by 1/2, we get

N 2 2 H1
A = jgl ri t Tt YTy, (rjl + rjﬂ.l) Hzno :(3-42b)
0

Figure 3.7 shows a possible implementation of rule (3-42).

An examination of the decision rule (3-42b) reveals the source of
| inferiority of the asynchronous coherent detector in comparison with its syn-
{ k chronous counterpart, namely, rule (3-9). The latter rule can be obtained

;! ¢ from (3-42b) if the factor ri+1,1 in the last term is substituted by ri1 be-
E; cause the resulting expression is then the perfect square (rj1+rj2)2 = rjz of
Fj (3-9). Since ri1 and ris1,1 2T€ independent rv's (they belong to different
. random chips) regardless of the true epoch value, it follows that such a sub-
% ¢ stitution would increase the mean of the decision statistic A' under H1 and
ﬁ slightly reduce the variance--the effect of which is a net improvement in per~
ﬁ' formance for the synchronous detector. We will now take a closer look at the
% performance of {3-42b).
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Without any loss in generality, we can assume that the true epoch is
e = 0. The symmetry of the problem suggests that the results to be derived under
such conditioning also represent the unconditional (average) performance in this
two-possible-value case. In order to pursue the familiar Gaussian type of anal-
ysis, one needs the means and variances of the rv's ri1 and rjp as per (3-41).
Those are readily calculated to be

NAT
2 - 0c [ 5 ]
J{ij lHk} 4 1+ Yc k1l
3 m=1,2
) . k=0,1 (3-43)
i N.T
21y U . ( 0 c> 1

var‘{rjm IHk’ = T3 ['Z+Yc le:l

Furthermore, it is easily shown that (See Appendix E)
sT_2

o T €20 ¢ = ; o roofH ze=08 = S 3-44
#{rs jaa[foe0} = 0 #{ryn rlhasof = ey (4
for k=0,1. Combining (3-42b), (3-43) and (3-44), it follows that

N Tc

J{A'lHk;£=0} - N(lz_) [1 +(3)v, le] (3-45)

A complete evaluation of system performance would require an addi-
tional calculation of the variance var{j' Hk » a5 was done for the decision
statistic (3-9). However, matters can be simplified considerably if we observe
that the result for the asynchronous variance should be higher than, but close
to, the synchronous variance of section 3.1, particularly for the low SNR range
of interest. The main rationale supporting such an assessment is the compari-
son between the asynchronous rule (3-42b) and the expanded synchronous rule

N
2 2 '
(3-9)e=> 321 ri1 + ri2 + ri1 j2 + ri1 i (3-9')
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which shows them differing in only one of four contributing terms., Thus, a
variance equal to N(NoTc)2/2 (see (3-10b)) is a good approximation for all
cases.

It follows from the above discussion and the underlying Gaussian as-
sumption that the primary measure of performance degradation due to asynchronism
is the reduction in the difference (distance) between the means of the two dis-
tributions corresponding to the alternative hypotheses. So, if we rewrite the
synchronous expression of (3-10a) as J{A'|Hk} = N(NOTC)[I + 2y, Gkﬂ/Z and
compare it to (3-45), we induce a loss factor of 4/3, or 1.25 dB, as the SNR
penalty associated with the aforementioned asynchronous detector.

The above estimated loss can also be viewed as a lower bound on the
performance losses of the continous-epoch uncertainty detector. This is be-
cause the two-point-uncertainty coherent detector discussed so far assumes a
random epoch that can take on only two values; thus, it faces less uncertainty
than any other multipoint or continuous type of epoch randomness. Therefore,
it is bound to outperform any other asynchronous detector, including the
continuous-uncertainty one.

It is also of interest here to derive an upper bound on the perfor-
mance losses of the continuous-uncertainty detector. This can be done by assum-
ing a truly continuous-epoch uncertainty and viewing the two-point detector as
a suboptimal quantized implementation of the optimal continuous-uncertainty one.
The performance losses of the suboptimal detector under a worst-case choice of
the unquantized epoch will then clearly upperbound the losses of any other,
higher complexity, multipoint or continuous detector.

Some reflection could persuade us that the worst epoch for the two-
point quantized detector is the one straddling between € = 0 and € = 1/2 , namely,
e = 1/4 (or, equivalently, € = 3/4, whose performance, however, is identical).
This is because, under H;, rjj will then have the lowest possible mean (namely,
zero) half of the time while rj remains unaffected. Any other offset will yield
a higher overall average for rji, thus improving performance.

It is shown in Appendix F that, under the worst epoch € = 1/4, the
Joint statistics of rj; and rj, become
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20y ..o
J{rjl IHk,e 1/4}

(N—Oil.r_c)l:l ¥ Ycakll

je=1/4p = see1/al - (NOTC)(Y—C)G (3-46)
dr‘jzr‘jllHk,e— /& = eerrjﬂ,lI K€ ’ =\ N7

21y ..
c{rjz lHk,e-1/4}

which, when substituted in (3-42b), yields

J§A|Hk;e=1/4§ - N<&’;E>|:1+(§) ycskﬂ (3-47)

A comparison of (3-47) with (3-10a) reveals a loss factor of 8/5, or 2 dB, with
respect to the synchronous structure.

In conclusion, the lack of synchronism in the coherent detector costs
anywhere from 1.25 dB (Tower bound) to 2 dB (upper bound). Tighter bounds can
be obtained by reiterating the above aﬁguments for epoch-quantized detectors
with more than two quantization points. As the number of points increases, one
asymptotically converges to the actual performance of the continuous-epoch de-
tector. In any case, a rough figure of an average 1.5-dB loss due to asynchron-
ism should not be far from exact. Similar conclusions can be drawn for the
noncoherent detectors of the previous sections.
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3.4 Energy Detector (Radiometer)

The most commonly used energy measuring device, the "energy detector"
or "radiometer", will now be analyzed as a potential candidate LPI detector.

In the battle for implementational savings and hardware reduction, the radiom-
eter is an easy winner: it is simply the cascade of a wide bandpass filter,
followed by a square-law device, a zonal LPF (possibly excluded), an integrator*
and, finally, a threshold comparator which produces the decision, as shown in
Figure 3.8. The bandwidth of the BP filter should approximately cover the null-
to-null bandwidth of the DS spread signal to be detected; thus, approximate
knowledge of the chip rate is an implicit necessity.

Clearly, the hypothesis discriminating power of the radiometer is
based on simple energy considerations: signal plus noise (under Hl) should
possess more energy than noise alone (under Ho)- Thus, by properly adjusting
the decision threshold, a correct decision will, hopefully, be made. It goes
without saying that performance, as measured by the pair CPD’PFA)’ increases
monotonically with increasing SNR‘YC and observation time T=NTC. On the other
hand, selection of the RF bandwidth NBP in the filter is subject to optimiza-
tion and is discussed more thoroughly in the following.

It has long been known that the precise analysis of systems contain-
ing linear plus nonlinear elements, as in Figure 3.8 for arbitrary filter shapes
and bandwidths, is generally unwieldy [11]. If the envelope detector of Figure
3.8 is assimilated to (or approximated by) an inphase-and-quadrature (I-Q) type
of envelope detector, it can then be claimed that the output statistic A has a
chi-squared distribution (central or noncentral, depending on whether a signal
is absent or present, respectively), with ZNNBPTC degrees of freedom. The prob-
abilities PFA and PD can then be calculated by a numerical integration of the
corresponding densities, from the threshold AO to infinity, since those inte-
grals cannot be found in closed form. This procedure can be very laborious.
Fortunately, when the time-bandwidth product NBP(NTC) is large (which is the
case here, since N is large), one can very accurately approximate the proba-
bility densities of A under both hypotheses by Gaussian ones, by virtue of a
central-limit-type argument. Then calculation of the overall performance be-

comes fairly straightforward.

*
Since the integrator itself acts as a Towpass filter, the zonal LPF
preceding it is typically eliminated; it is included here as a conceptual aid.

-----------
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o The received waveform r(t) is described by (3-2). The BPF is assumed ’
1
{: © to be rectangular with bandwidth “BP' The output of the BPF in Figure 3.8 is
[}
iS rBP(t) = /25 c(t) cos(uwgt + ¢) + nBP(t) (3-48) K
> :
C b where nBP(t) is filtered AGN with the typical BP representation
4 h
) ngp(t) = /Z[n;(t) cos ugt + no(t) stn ugt] (3-49)
q © . . , |
. In (3-49), nI(t) and nQ(t) are approximately independent, zero-mean, jointly !
o% Gaussian, lowpass noise processes, each with a PSD of No W/Hz (one-sided) and )
1 bandwidth of HBP/Z Hz (one-sided). The code signal, filtered by the BPF, is .
i(; designated c(t) in (3-48). The zonal LPF (shown for analytical purposes only)
» rejects the 2f, components of the square-law output z(t) and has an output :
- given by
3 z.,(t) = s(2(t))F + n 2(t) + ng2(t) + 28 E(t) n(t) (3-50)
i R4 LP I Q I ,
S
) In order to maintain analytical tractability, we approximate and model
v c(t) as an attenuated, but undistorted, version of c(t), namely, ;
W, .
) @
- 2(t) 2 oc(t) (3-51)
! 2 |
“ where the "attenuation factor" o measures the (normalized) power reduction due
' to filtering:

.l.‘\"
PR

2 2 __L !HL(f)|2 Sc(f)df _(_2_) ‘/""WBPTC/2 (sinx)z dx (3.52)

pllalssy
ﬂ

a =
= X

L S (f)df m/ ‘
- 2 .
j? since, for a tl-valued code, the denominator of (3-52) equals ¢“(t) = 1. D
S .
@ ! In the previous expression, Sc(f) is the PSD of the random code signal c(t)
) and H (f) is the lowpass equivalent of the BPF HBP(t), i.e., :
X . -
~ y
\ v

L]

hendh! .'J‘.'\l.". B YUY -




VAN

—

LR ] AU

. -

DN,

LSOO

R4

28 s AN

L ln W0

37

1 [f] < W /2
0 , otherwise

By suitably adjusting HL(f), (3-52) can be generalized to filters other than the
perfectly rectangular one considered above.
From the above definitions, it follows that CB(t))2 = of, Thus,

2

25(t) = oS+ n2(t) + ng(t) + 28 ac(t) ny(t) (3-53)

under Hl' Under the alternative HO' zLP(t) is given by the above expression
with S = 0. It follows that

#lz o0 [t = o%S 5q + N Hgp; ka0, (3-54)

with 81 as per (3-10c). Thus, the expected value JﬁA|Hk§ of test statistic A
at the output of the integrator in Figure 3.8 can be calculated under either
hypothesis Hk;k=0.1, as

‘%Alsz = /NTC g{sz(tﬂ Hktdt = NTCVE‘ONBP + aZSGk;[; k=0,1 (3-55)
0

The next step is to obtain the second-order statistics of zLP(t) and
A. The typical approach, based on the assumption HBPNT >> 1, is to model
LP(t) as a very wideband ("delta-correlated") process with respect to the ap-
proximate bandwidth (NTC) of the integrator. Thus, one needs to evaluate only
the PSD of zLP(t) at the origin f = 0, distinguishing between the average (con-
stant) contribution and the random contribution. Using the fact that nI(t) and
nQ(t) are Gaussian, the autocorrelation function c* zLP(t) can be obtained di-
rectly; from that, its PSD under H1 is given by

2
Sz,p(f) = (oS + NoWgp) 8(F) + 4Sn(F) @ Sng(f) + 4a? S5 (F) @ Spy(f)  (3-56)

where @ means "convolved with." The coefficient of the Dirac delta function
8(f) agrees with the first-order statistics of zLP(t) obtained directly in
(3-54). The two-sided PSD of zLP(t) at f = 0 measures its random contribution

‘a™
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and is obtained by evaluating the last two terms of SzLP(f) in (3-56) with f=0,
resulting in

2 4 . La
SZLP(f)' = N0 NBP + 2a SNy 8y k=0,1 (3-57)
f=0

The delta-correlated random part of sz(t) contributes to the variance of A as

var{A'Hk} = (NTC)SZLP(O) = (NTC)(NOZHBP+ZQ4 SNy 5k1) (3-58)

The mean and variance of A in (3-55) and (3-58) suffice to characterize perfor-
mance under the Gaussian assumption which hinges on the fact that "NPNTc' N2> 1.
The ressit is (3-11) with

3
a = ‘/a—-r“ . b = 2a° (3-59)
BP ¢

Clearly, the choice of Wgp has an impact on a through (3-59) and <3 in (3-52).

The quantity

2 "HgpT /2 (sinx)z
(;f-) f . dx
a = —% = 0 (3-60)
BP ¢ BP ‘c

has been plotted in Figure 3.9 as a function of the product wBPTc‘ The max-
imum qrax ” 0.77 is attained at HBPTc = 1. This corresponds to a minimum SNR
loss of 1.1 dB with respect to the chip noncoherent detector (3-24). Since
the above conclusions are based strictly on energy considerations and the inter-
chip interference effects due to filtering have not been taken into account,

the actual losses are somewhat higher. In the following comparisons, we select

a nominal loss figure of -1.5 dB. We note that the above losses pertain to a
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rectangular BPF; other filter shapes will result in different loss figures,
typically of the same order. For example, [10] can be consulted for the effect
of filtering on a baseband rectangular pulse in terms of output SNR losses,
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. 3.5 Comparisons and Discussion
A11 the previous theory was developed under the cardinal assumption .
that the received waveform r(t), on which the decision is based, is of the form ;
(3-2). Excluding the fact that the spreading is done via DS methods (alterna- ':-’
e tives such as frequency and time hopping will be studied in the sequel), three §
key restrictions in the system modeling were applied: (a) under His the whole v‘
observation interval (0,T) is occupied by the spread waveform, (b) there is on- 32;-
1y one version of signal plus noise available, and (c) the additive disturbance "
° is white Gaussian noise. Let us now cooment on each of these restrictions. -
Assumption (a) is not as restrictive as it might seem at first. Ad- ?
mittedly, if the starting signal transmission time is unknown, the intercepting \
receiver will be forced to Jook at T-second observation intervals that are ran- :::
- domly placed with respect to the actual transmission time. One could develop N
a theory along lines similar to those presented herein, whereby the performance -
losses due to such realistic randomness are taken into account. Although the t‘-
performance of each individual suggested system will certainly be altered, their C::
relative ranking in terms of effectiveness is expected to remain the same. Thus, o
i the conclusions and comparisons which we shall soon undertake should carry over A
more or less intact. In order to be definite, however, one should take a closer .‘.5
Took in the future*, R
Assumption (b) is more substantial in nature. In fact, it will now ;:'
e be shown that performance improvement can be gained by utilizing two receptions .
which cover the same geographical area (hence, contain the same useful signal), ,
but possess independent RF circuits (hence, independent thermal noise compon- _.:
ents). In order to briefly illustrate the idea, let us consider a synchronous f-"
¢ coherent system. )
)
Let é:\'_
c ry(t) = Sclt) gy + ny(t) (o <t< T) (3-61) R
rp(t) = /S c(t) 64 + ny(t) k=0, e
%
represent the two receptions. Here the two noise processes n (t);m=1,2 are rl'
o Gaussian and independent, while the signal component c(t) is the same in both
- A )
iEOne could create a multitude of possible solutions, such as over- ".f
lapping versus nonoverlapping observation intervals, etc. AN
b,
¢ ®

N0, ~ s.» \\- \1\";- Mooy S P ¥ B T IS ) TG W T N )y e s S SN N e
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(- ®© waveforms. We should point out that, when implementing the cross-correlation
;} which we are about to discuss, maximum care must be exercised to ensure that
¢ the two code signal components are indeed in phase since timing offsets of more
.: than a code chip will result in involuntary signal spreading and total loss of
"0 detection capability.
N The decision rule adopted here is a simple correlation (see Figure 3.,10)
>
) H
N NT N 1
3 o c . (1) . (2) 3 . i
s » A f ri(t) ry(t)dt '§1 rtthory H< N (3-62a)
N 0 J 0
\o
‘..
~ where
N
‘-‘ .T
" - 5
L rj("') - f € r (t) dt (3-62b)
: (3-1)
2
- . 2 (1), (2)
W ® We note that (3-62) is analogous to (3-9) once rs is substituted by Py iy
. Clearly, in the absence of thermal noise, both (3-9) and (3-62) produce the same
N quantity, NSTCZ; however, performance is different in noise. Indeed, from (3-26),
58
) it easily follows that (see Appendix G):
‘ . ’
- en it = NNgTe) v, 8y (3-63a)
and
18 .
- ariu it = N(NT)? l}* Ye ‘kl] (3-63b)
. The resulting performance is again described by (3-11), where now
¢C
§ a=2;b=4 (Two independent receptions) (3-64)
L)
'
i( Thus, a comparison with the corresponding performance parameters (3-12a) for
- the (one-reception) synchronous coherent radiometer reveals a gain factor of
: vZ, or 1.5 dB in SNR for the present system. However, we would again like to
v emphasize that this gain is attained at the cost of higher complexity.
@
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Before commenting on the third assumption (c), let us attempt an
evaluation of the relative merits of all the previous detector structures.
The conclusions have been summarized in Figure 3.11 for the exemplary case of
PFA = 10'2 and N = 1000 chips. Clearly, the ultimate upper bound in performance
corresponds to the ideal (but unrealistic, from the LPI viewpoint) case of a
totally known signal (under Hj), i.e., a code-matched receiver. Since it is an
unachievable upper bound, it has been included merely to serve as a comparative
yardstick. It is represented by curve () , whose analytical description is via
the distance dyp (as per (2-2)):

dUB = 2Ny (3-65)

c

where a coherent system has been assumed. Comparing (3-65) with (3-12b) implies
that there is a loss factor of‘QW;'associated with the lack of code knowledge,
and this factor is significant at low SNR's. On the other hand, all performances
are lower bounded by that of the radiometer, which was derived in the previous
subsection (see (3-59)) and is represented by curve ® in Figure 3.11. The re-
maining curves @, @ and @ pertain to alternate receivers which were consid-
ered herein: @ corresponds to a detector utilizing two independent, synchron-
ous, coherent receptions, @ to one synchronous, coherent detector, and @ to
a synchronous, chip-noncoherent detector. The difference between @ and @ is
roughly 1.5 dB which is also the difference between @ and @, as well as @
and ® . It follows that, under fairly ideal conditions, i.e., two independent
synchronous coherent receptions, one could utilize up to 4.5 or 5 dB gain above
the radiometer; each of the added features (i.e., two receptions, synchronism
and coherency) can be thought of as contributing 1.5 dB to the gain. We note
that, in arriving at these gain figures, system imperfections and noncalibrated
parameters such as doppler frequency offset have not been accounted for.

In conclusion, it is seen that certain gains are plausible with re-
spect to the radiometer if careful designs are employed, but they are certainly
not overwhelming--at least in the SNR range of interest. This is because a
high-rate DS waveform is not very distinguishable from the background thermal
AWG noise in which it is detected and, as is well known, the radiometer then
becomes an asymptotically optimal detector. This is also in accordance with
Krasner's approximate result regarding biorthogonal waveforms ([6, eq. (29)).
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However, if one removes the biorthogonality of the signal set and/or
the AWG nature of the noise, the results can differ substantially. One illus-
tration of the former case can be found in the following section regarding time
hopping. Furthermore, if one removes assumption (c) about the white Gaussian
nature of the noise, i.e., if some colored interference is superimposed on the
thermal background noise, a whole new class of (mostly) open problems is gener-
ated. Tackling such problems from a theoretically optimal standpoint would be
a much more complicated task in general than that which has been performed up .
to now for AWGN; nonetheless, the benefits derived from applying certain sub-
optimal solutions (which are, however, more sophisticated than the radiom-
eter) could be signficant. One particular case of detecting DS waveforms in
random-tone interference--and in the absence of thermal noise--is treated in
section 5.2, wherein* it is shown that the application of real-time auto-
correlation techniques can bring about impressive gains with respect to the
radiometer. Although this is a rather ad-hoc technique and the hypothesized
scenario is not the most general one, it still serves as a good motivating
example of how benefical an extra degree of sophistication can be when the
problem formulation and conditions vary.

*Although the development there formally pertains to a FH/DS hybrid
system, it essentially addresses DS waveforms since it is concerned with the 5
signal processing on a per-band (single hopping slot) basis. .
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4.0 DETECTION OF TIME-HOPPING WAVEFORMS

We now focus on the wideband detection of TH waveforms, where the code
dictating the hopping is again assumed random. We shall consider only synchronous
detectors (i.e., the timing or epoch of the hopping slot will be assumed known);
asynchronism can be treated with methods similar to those used in section 3.3.
Furthermore, both carrier-coherent and carrier-noncoherent systems will be exam-
ined. In particular, the former will assume a known carrier phase combined with
a pulse-position-modulation (PPM) format while, for the latter, any modulation
that randomizes the phase from frame to frame (e.g., BPSK) is well suited. We
term such cases "pulse noncoherent." Clearly, one could hypothesize a nonco-
herent PPM system with an unknown constant carrier phase and derive the optimal
detection rule. However, the resulting receiver and pertinent analysis are much
too complicated (for a similar situation, refer to section 3.2 for DS); there-
fore, only pulse-noncoherent systems will be discussed here. Again, the lower-
bounding performance of the radiometer will indicate that very little is Tost
by using this simplification.

For our purposes, the received waveforms (TH signal plus noise) can
be written as

r(t) = V25 fi p(t - kTF - kaH)cos(mot + ek) + n(t) (4-1)

K==

where TF is the frame length, TH is the hop length (width of each time slot), and
P28y are random variables that are independent from frame to frame* and of each
other, denoting the slot location and carrier phase, respectively, during the kth
frame. Here, P can take on any one of the equiprobable values pk-O, . ,NF -1,
where NF £ TF/TH is the total number of slots per frame and By summarizes both
the unmodulated carrier phase ¢ plus any superimposed PSK modulation. For coher-
ent systems, o, is assumed known for every k. Finally, p(t) is a unit pulse of
duration Ty seconds, while n(t) is the usual bandpass AWGN. A noiseless sample
waveform (realization) of the T, signal is shown in Figure 4.1. We shall assume
that the total observation interval consists of Q frames, i.e., T = QTF = QNFTH.

The independence of 8K is within the aforementioned spirit of a
“pulse-noncoherent" system.
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4.1 Synchronous Coherent Detectors

Under the coherent assumption, "1" is substituted for /2 cos(w0t+ak)
in (4-1). Then a straightforward application of the generalized likelihoood
ratio yields

N H
vy b N
A(r(t)) = 'ﬁ' M > exp{-zﬂ':)—§ rkm} I%AO (8-2)

m1)] N =1

where
ST
A
v © Woﬂ (4-3)
is the SNR per time hop (slot) and
(m-1)TE+kT,,
"em = r(t) p(t - kTy)dt (4-4)

(m-l)TF+(k-1)TH

is the integral of r(t) in the kth slot of the mth frame. If vy, is a small num-
ber, so that exp{x} = 1+x, (4~2) can be simplified to the approximate

T
A'(r(t)) = b/ r(t)dt

i.e., just the coherent integral of r(t). However, since H is typically above
0 d8 Cmuch larger than ya, such approximations are not as successful as in the
DS case--a fact to which the comparisons in section 4.3 will attest.

The distance dcoh for the coherent rule (4-2) can be derived based on
(2-3) and the following steps, as in [3]:

AV,

X
o
(=]

A (4-5)

2

& - zne{AZIHO} = Qfn e{AFZlHO} (4-6)

where AF is the likelihood ratio per frame. But,
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2 . e"”é'*u} 25
{ ® £n J{A FIHO} lnE + var O’ exp -NE "km
! f— exps 2y } .
. H 2/5 .
- = in}jl + var, exp‘ 5
% ] ”o% o 'k "
- —
{ exp{-2y ]
, = £n|l + _il_ﬁz <exp{4yH} - exp ZyH}J (4-7) )
e _
4 %
@ since r . is a zero-mean Gaussian random variable (rv) under Hy. Combining
A
s (4-6) and (4-7) results in z
°, _ 1 ZYH (]
o deop = ‘/Q in[l * R (e - 1)] (4-8) .
The distance dcoh,appr for the approximate rule (4-5) is derived much easier :
~ since .
{ ® |
3 e{A-|Hk} = QT 8, k=0, (4-9a) 3
R and :
, . ;
] varin[Hoh = (NaT,) 2 (4-9b) 3
5 (
- Therefore, '
> h i
c _ o |ny} - o g} '
: deoh,appr ~ 172 ) 2( ) H (4-10)
' »appP (var{A'lﬂo}) F ;
N "}
N X
o '3
;C It is clear from (4-8) and (4-10) that d.on 2Symptotically approaches dcoh,appr X
¢ as vy + 0, an expected result. Furthermore, we can compare the approximate )
- coherent rules (3-9) for DS versus (4-5) for TH and note that the first involves :
Ca
- a nonlinear operation on the data prior to integration, while the second does :
” not. This has a-reflection on their corresponding distances as (3-12b) is di- \
(¢ rectly proportional to y_., while (4-10) is proportional to [yy. Thus, for the ) |
c H by
% very Tow SNR-case, the latter would outperform the former; therefore, TH is a \
: more detectable waveform than DS.
:
T
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4,2 Synchronous-Noncoherent Detectors

Starting from (4-1) and invoking the independeiit phase assumption
results in the decision rule

N H
exps-y F
A = "Pl'{—é-—}'__ L35 Io(‘znf‘ ka)}r% 4o (4-11)

m=1 k=1

where R . 1is the kth slot, mth frame envelope

2 2
Rem = ¥eIkm * ©Q,km (4-12a)
and
e (m=1)T+kT €0S wnt
EI"‘"EI = 2 f FoH r(t) [m mogldt (4-12b)
Q,km 0

k=1,...,NF 3 m=l,...,0Q

The distance dnoncoh associated with (4-11) is derived by steps identical to
(4-7) as

Ynoncon ﬁ tn[1 + g {1C2ny) - 1) ] (4-13)

Since Io(x) < exp{x} for every x > 0, it follows from the comparison of (4-8)

and (4-13) that deon > Ynoncon TOr every vy, as expected. o
Instead of analyzing the noncoherent rule which approximates (4-11)

for Tow SNR, let us consider only the performance of the radiometer that oper-

ates on the time-hopped waveform (4-1) for TH seconds. Following the steps 1
outlined in section 3.4, it can be shown that 2

where the constant K. 4 4 “47u8P TH again measures the loss due to filtering. Ny

\f 4%, " "i ! ~ . | r‘~~ ~. .n "$' \ ; 7"\ “' v ' i
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As in section 3.4, K, can be set at its optimal value K .4 = (0.77)2 = 0.6.
We should note here that (4-14) is actually an optimistic prediction (i.e.,

an upper bound) of the radiometer's performance since it is based on the assump-
tion that the variance of the test statistic under H1 is approximately the same
as under H,. For medium-to-high vy, this is not true (unlike the DS case where

it is justified by the low values of y.). Although a more meaningful perfor-
mance description can easily be derived*, we shall be content with (4-14) for
comparison purposes.

I3
It will consist of a pair of equations similar to (3-11) and (3-59)
under an appropriate interpretation of the parameters involved.
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4.3 Comparisons and Discussion

| First, we are interested in comparing the relative loss of the approx-
imate coherent rule (4-5) versus the exact (4-2) since the former can be imple-
" mented trivially (a simple integrator) in contrast to the significant complex-
ity of the latter. The comparison is in terms of the relative SNR values YH
(in dB) required by each in order to achieve the same performance level (d?)
for ihe same fixed values of Q and Ne. It is based on (4-8) and (4-10) and is
shown in Figure 4.2 (N = 10). As expected, the difference diminishes at Tow

SNR, but is rather pronounced at medium-to-high SNR. So, Yﬁoh

sponds to Yﬁoh,appr increases.
Second, we 1ook at the gains brought about by the coherent assumption

versus the noncoherent by comparing the "exact" distances in (4-8) and (4-13).

= 0 dB corre-

= 3.9 dB--a gap that increases rapidly as Yﬁ°h

The result, again in terms of the required SNR's for the same performance level,
is shown in Figure 4.3. The difference here diminishes as SNR increases, while
it can be substantial at low SNR. The final comparison is between the noncoher-
ent "exact" performance (4-13) (or its equivalent log-1ikelihood sum) versus
the radiometer performance estimate (4-14). It is shown in Figure 4.4 for
Krad = 0.6 and NF = 10. The irreducible distance of 1.1 dB as the SNR goes to
zero is due to the JE;;; factor*. Again, we should keep in mind that the actual
SNR losses of the radiometer are higher than those shown in Figure 4.4 by an
amount that increases with SNR due to previously discussed reasons. Furthermore,
\d a common trend is evident from Figures 4.2 and 4.4, namely, that the simplify-
ing deviations from the optimal decision rules incur comparative losses that
increase fairly rapidly with the available hop SNR for values of YN above
2 - 3dB. Since this is the dominant range of importance in TH applications,
G optimal devices (albeit complex) should attract due attention.

*However, this margin will probably disappear if the loss due to
asynchronism is accounted for in an asynchronous, noncoherent, optimal detector.
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5.0 DETECTION OF FREQUENCY-HOPPING SIGNALS

USING AUTOCORRELATION TECHNIQUES

We shall now focus on the detection of FH or FH/DS waveforms embedded
in different forms of additive interference. The two particular cases of inter-
est are: (1) FH signals in AWGN (section 5.1) and, (2) FH/DS signals in random-
tone interference (section 5.2). Although optimal detectors can be derived--at
least for case (1)--following the guidelines of Sections 3 and 4, those will not
receive any in-depth treatment here because their exact implementation is usually
hampered by excessive complexity. Instead, we shall deal with improved suboptimal
wideband detection procedures, such as real-time autocorrelation-domain algorithms.
Our approach has been motivated by recent advances in the technology of real-time
autocorreliation and convolution devices with large time-bandwidth products {12,
13]. The rationale for introducing such techniques in the context of wideband
detection is explained herein.

Let s(t) be the frequency-hopped signal to be detected (under H;) in
AWGN within a total spread bandwidth of Hs Hz. If RH 4 TH'1 is the hopping rate
and the hopping frequencies are contiguous and equispaced by the minimum nonco-
herent orthogonal separation Af = RH' it follows that the total number M of pos-
sible hopping locations is M = NS/RH = NSTH--typical1y, a very large number. If
the total observation time T is for NT hops, i.e., T = NTTH' it can then be shown
under suitable assumptions that the log 1ikelihood ratio reduces to

Nt M H
2/5 >
[} Ig (=R A 5-1
;Zl ) ;Zl 0 ( 0 n;) ﬁ; 0 (5-1)

where an is the envelope output, at the end of the nth hopping interval, of
the matched filter centered around the mth hopping frequency (spectral siot),
Io(') is the zeroth-order Bessel function, and S,N0 are the signal power and
one-sided noise power spectral density (PSD), respectively. Equation (5-1)
is the dual to (4-11) for the TH case; it thus follows that performance is
quantified by the "exact" distance

dgy = JNT an + 5 (1oCvy) - 1)] (5-2)
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where v, is the hop SNR w3

YH = N. (5‘3)

analogous to (4-13).

The most inconvenient aspect of the optimal rule (5-1) is perhaps
its complexity: whether implemented as a bank of matched channels or via an
FFT (which would simultaneously provide all the spectral estimates Rpm,m=1,
... M for each hopping time), the resulting complexity, measured by the number
of required filters, can be enormous. One way of alleviating the problem is
shown in Figure 5.1: the total bandwidth Hs is subdivided into large contig-
uous segments of B Hz, each being much larger than the optimal bandwidth of
RH Hz. Appropriate processing produces a per-band decision which is then fed
into an overall accumulator (e.g., a majority-logic combiner) for a final de-
cision (H; versus Hp). Let us note that alternate reduced configurations have
also appeared in the literature [4,5], such as the partial-band filter-bank
combiner. There, only a fraction of the total number M of the hopping slots
is peing observed, but the observatio:i bandwidth per slot is optimal (B = Ry).
A comparison between alternatives has not yet been performed.

The focus of this section is the waveform-processing (WP) aspect on
a per-band basis. Clearly, algorithms improving performance on that level will
also increase the overall system performance. We shall assume throughout this
development that the time-bandwidth product

6 $BT, = BRI (5-4)
is very large, i.e., of the order of hundreds. The factor G also measures the

order of the reduction in complexity when implementing the suboptimal structure
of Figure 5.1 instead of the optimal. As a consequence, the input SNR per band,

Yip» defined as :-!11

R

4 S ;

NN

@

is typically very small compared to unity (yin << 1). ¢
N
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= 60
E Two questions .rise immediately:
_. (1) Into how many bands should the spectrum be divided?
? (2) What kinds of WP alternatives are available or could be used?
. With respect to (1), it is intuitively clear that one should use as
' <@ many bands as the number of devices which can be affor:2d since, by decreasing
o B and thus increasing Yip from (5-5), more reliable decisions on a per-band ba-
N sis can be achieved; an elaborate cost-versus-payoff study is of significant
I‘_ interest in this area, but will not be pursued here. As for the second question,
R we note that the device which immediately comes to mind is the familiar radiom-
. eter, designed to measure energy in the band of B Hz, as shown in Figure 5.2.
Under the Gaussian assumption for the output decision statistic Y (which is
l well justified for very large G via a central-limit-type argument), its per-
q. e formance is easily derived to be
2
,: drad = Q-I[PFI;] - Q-IEQ-J = \/S—NTou_t (5-6a)
h
{ g where
3 SR, = SN2 - gy, 2o gl ? (5-6b)
h Y
@
z Note that the second equality in (5-6b) signifies the small signal suppression
effect of square-law detectors [11, page 267]. Again, it should be emphasized
2 that CPD’PFA) pertain to the per-band decision--not the overall decision scheme.
¢ The autocorrelation-domain methods to be elaborated upon in the follow-
= ing sections can be viewed as a step towards higher sophistication and, therefore,
::: efficiency, of the WP component. In essence, a real-time correlator performs a
transformation of the detection problem from the time domain (with parameter t)
S:n to a new one, namely, the correlation domain (with parameter t), in the hope
:‘ that the new "data", i.e., the correlation function y(t), can provide enhanced
P feature separation between the signal and interference. The merit of such tech-
N niques will always be judged against the radiometer which, by nature, takes no
] account of any signaling details.
& ¢ We note that the two scenarios to be examined involve the two most
3 different types of interference from a spectral viewpoint, namely, totally flat
p (AWGN) and totally peaked (tones). Furthermore, they are designed such that
d ©
)

TP N TR T e ™ RIS P I S T IS ) ¥t e e T e T e TN T e N T T T TR TR T T v e
SA KO AP RERCTALC AL CVEAL LN L GEH AL LS CRTMILILAY (S CULNRN ChA N C) CHC GRS X



-~

'

n¥nVr

61

3se) HJ PURGIPLM 3Y3 404 PIS( 4932WOLPRY AL

UOLS 1 I9( i

uos L yedwo?)

ploysasyj

Y

Hp(1-%)

HiY

*2°G dJnbL4

(3)4

g9 = Md
449

&

7

S d
"

e, ..

PN

<

~
a

\'\"‘ d._

RO UL R T
At ACPCNCAT L

S

Cala¥at

e ldl

Y

N

o b

RN

RN

-
1ad

Y

0N

AR NIEHN

.
W

el



62

the structural differences between the signal and interference can indeed be
9 exploited to the fullest. As a result, significant gains can be extracted
from the correlation domain with respect to the radiometer. At the other ex-
treme, no intelligent algorithm could distinguish, for instance, a random hop-
ping tone from unrelated extraneous random-tone interference, in the absence
- of additional information. But even then, correlation algorithms would per-
form no worse than the radiometer. In conclusion, it can be stated that the
algorithms to be analyzed herein offer the potential of performance improve-
ment over the common energy detector, which can range from none to impressive,
X depending on the scenario. The structure and performance of decision rules
: which will bring about those gains in the presence of mixed types of interfer-
ence, will be the topic of future research.
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5.1 Wideband Detection of FH in AWGN

5.1.1 System Model and Proposed Algorithm

Henceforth, the term "wideband"” will be used to indicate detection
on a per-band basis under the cardinal restriction (5-4). One mathematical
representation of a real-time autocorrelator whose actual implementation is
discussed in [12] is shown in Figure 5.3. Let us note that the offset «,
which is the domain parameter for the output autocorrelation function y(t),
varies linearly with the actual time t of the incoming waveform as a result
of the real-time nature of the correlating device. Therefore, the actual in-
tegration time is from t to TH' Since the radiometer output is only y(0),
i.e., just a data point in the new domain, improved performance due to the new
scheme is naturally expected.

The decision rule adopted here is as follows: The output y(z) is
power sampled at multiples of B'l, where B is the input BPF bandwidth and the
resulting samples are linearly combined and compared to a threshold, whereupon
a decision is reached (Hl versus Ho for the corresponding spectral band). No-
tationally, -

G-1
Y = > & W Z Threshold (5-7a)
k=1

SAVTE

where Y is the decision statistic, 7, 4 k-B'1

point in the t domain, and

k=1,2,...,G-1 is the kth sampling

2
W = y°( (5-7b)
k ( k) Lowpass

is the power measurement around the Ty point. The set of coefficients {ak}f'l
can be chosen according to any particular philosophy and is subject to optimi-
zation. It can be argued that, under a 1ow-SNR assumption, setting all coeffi-
cients equal to a constant ak=1 is a near-optimal choice. This, however, is not
a well-founded conclusion as it involves a number of approximations. Fortunate-
1y, simulation has indicated (see section 5.1.3) that performance of the summa-
tion (5-7a) is very insensitive to the exact value of a and a number of reason-
able choices would work as long as the upper 1imit of the summation is properly
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truncated at a level of AG, which is less than G (i.e., A < 1). This is

.‘i because the last samples possess such an increased variance that their in-
clusion in the summation is detrimental. Analytically, this is equivalent
to letting ak==0 for AG+l,...,G in (5-7a). Thus, a proper choice of A is

_ rather crucial, while that of {ak}ﬁgl is not. For reasons that will soon
- be clear, it will be mathematically convenient to let
(Th - =) 5 keloeooae
a = (5-8)

L

0 » k=AG+1,...,G

in the following calculations.
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) 5.1.2 Performance Analysis >

\ ° Here we shall attempt a performance evaluation of the decision rule !
. (5-7) when the interference consists of bandpass AWGN n(t). Thus, during one '
" hop interval 0 <t < TH, under Hl’ the input r(t) to the autocorrelator of Fig-

. )
- ure 5.3 consists of a tone at some radian frequency wg within the observed band |
g plus noise, i.e.,
o ':
: :
: r(t) = /25 cos uyt + n(t) (5-92) :
¢ )
N where n(t) assumes the typical bandpass representation* ;

A :

! n(t) = /Z'l:nl(t) €0 ugt = ng(t) sin wot] (5-9b) ‘
i o s
't" . , 3
M . J

In (5-9b), NI(t) and NQ(t) are the inphase and quadrature lowpass noise pro- h$
. cesses, respectively, which are approximately independent and identically J

5 ® distributed, with zero mean, flat two-sided PSD of N,/2 W/Hz, and two-sided .

' bandwidth of B Hz each. Since double frequencies are filtered out by the i !
N integrator, the autocorrelator output y(t) around the signal frequency is s
. T, N

j © ylr) = / r(t)r(t-t)dt = yoolt) + ygulr) + yyg(t) + yyy(x) (5-10) 1
LB

Y 4

: >

‘| with ¢

e '
X = ST, - cos 5-1la -

yss (1) = STy - <) cos ugs (5-11a) 3
) >
. d . ¥
: yon(t) = ANT(x) cos ugr + Ki(x) sin uge) (5-11b) |
A3 3
Ws(®) = B(Ny(x) cos wgr - No(x) sin ugr) (5-11c) 2
a KS
3 () = (NH(r) + NQQ(T)) cos wgt + (Nm(r) - NQI(r))sin wgt  (5-11d) R
v

—
Since we shall be concerned with noncoherent detection, an arbitrary
phase 8 can be inserted in the bandpass description of the noise without alter-

, ing the results.
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:¥ where the correlation-domain noise processes have been introduced, i.e.,
1’1’
, d TH ’
b N I(‘r) = n I(t--r)dt (5-12a) .
P b
- &J T LJ
4
' T
) o N[I (t) = / H ng](t)dt (5-12b)
& Q] [ o
..;l y
W Ty
f‘ Nu(r) = / nI(t) nI(t-t)dt (5-12c)
T

S

1 No() = [ (t) n,(t-t)dt (5-12d) :
X QQ fglt/ Mol :
*‘\ .
) T

iy T
b T

o = H - -

. . : NQI(r) / nQ(t) n;(t-1)dt (5-12f)

. T

]

4

4 Much of the following theory deals with the statistical characterization of the

@ above noise processes. For instance, it is clear that the first four processes
i< in (5-12a) and (5-12b) are zero mean and Gaussian, while the remaining are not
Gaussian. However, they will be approximately treated as such in the analysis,

'
f particularly for 0 < T < Ty, by virtue of a central-limit type argument, as
ko follows: The bandwidth B of n,(t) and n.(t) is much larger than T,~l; thus,
{ Q H
- each integral in (5-12c) through (5-12f) can be approximated by a large sum of

' noise-product samples, each sample taken B~l seconds apart. Since we shall be
interested in values of t that are multiples of B'l. it can be shown that those
‘(‘ samples are mutually uncorrelated. Although this does not imply statistical
independence (which is a prerequisite for a rigorous application of the central-
1imit theorem), it nonetheless reinforces the validity of the approximation.

" This will permit us to calculate higher moments using Gaussian identities whose
st? exact evaluation would otherwise be unwieldy. We furthermore note that simula-
\ tion has confirmed the accuracy of the approximation to a pleasantly surprising
degree (see sectfon 5.1.3).
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The first point of interest is the mean value of y(t) in (5-10). We
shall assume that the input BP filter in Figure 5.3 has a perfectly rectangular
transfer function ("brick wall"), which implies that the autocorrelation func-
tion Rnn(r) for both nI(t) and nQ(t) is given by

NGB
Rop(®) & efny(ting(t-0)} = #ng(ting(t-n)} = <—g—>5a(war) (5-13)

where Sa(x) 4 (sin x)/x. Using the fact that

efn )= e} - e{ng) - e{ng) - e{ng) - e{ny} - 0 (51

e{n (0} = &N} = (Ty - 1) Rople) (5-14b)

we conclude from (5-10) through (5-14) that
c{y(t)} = [:S + (NOB) Sa(nBrﬂ (TH - -r) COS wyt (5-15)

Certain interesting observations can be made on (5-15). First, although the
quadrature component ( sin “’OT) has been eliminated, the mean l{y(r)} still
includes an oscillation of unknown frequency*. That is why noncoherent (power)
sampling must be performed at the signal-processing unit. Second, we note
that the mean value at zero offset &{y(0)} = s+ NOB)TH is just the average
energy measured by the radiometer at the end of TH seconds, as it should be.
Since we have assumed that Yin << 1, implying that S < NOB, it follows that
the radiometer output is dominated by the noise contribution--definitely not
a helpful situation. Third, and most important, it follows from (5-15) that,
if the output y(t) is power sampled at multiples of B'l, e, 1 = kB'l;k an
integer, the contribution of the mean noise will be eliminated due to the
nulls of the Sa(x) function. This fact will be exploited in the following.

*The only thing known about fg = wy/2r is that it belongs in the
frequency band observed, but it is otherwise unspecified.
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Let us return to (5-10) for a moment. Since we shall be interested
in the low-SNR case, we make the simplifying assumption that the signal times
noise terms ySN(r) and yNS(r) are negligible compared to the noise times noise
term yNN(t). For ¥;, below -15 dB or so, such a simplification is quite justi-
fied, as also indicated by the simulation. When Yin is higher, the neglected
terms increase the variance of the output statistic under Hl(:they clearly are
not present under Hp), with a resulting deterioration in overall performance.
At this stage, however, we shall derive a performance estimate for low SNR,
leaving more refined (and much more cumbersome) calculations for later. Within
this formulation, y(t) can be rewritten as

y(r) = C(r) cos wyr + N?q(T) cOS wqT + NS“(:) sin wgr (5-16)
where
S(Ty- H
C(x) = { L) (H0) (5-17a)
0 Gy

and the equivalent noises

">

N?q(t) Npp(x) + Ngg(®) (5-17b)

and

NG () & Npo(n) = Ngp(e) (5-17¢)

1

As mentioned, y(t) will be power sampled at T = kB~ "; at which points,

{450} - e (NI} = o (5-18)

According to our previous discussion, N?q and N9 will be treated as Gaussian
noises. Furthermore, it is shown in Appendix H that N§3(ty ) and qu(rj) are
uncorrelated for every k,j=1,2,3...,G; similarly, the pairs (N?q(fkl)- N?q(rkz))
and (qucrkl), qu(Tkz)) are uncorrelated as long as Tkq # Tko- Coupling this
result with the approximate Gaussian assumption, it follows that the sequences
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. are zero mean and approximately independent. Thus, to complete their statisti-
cal description, the second moments (or variances, for this case) are required.
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.

y of noise samples {N?q(&k)}igl and {qu(ik)}i=1 contain 2G Gaussian rv's which

&

(

N\
, Those are obtained in Appendix H, wherein it is shown that

2
g c{(quCtk)) } = (NB)2(Tymi) 2 (Fytk) + Fp(k) (5-19a)
? and
o ) 2
) 2
A ,{(Ngq(tk)) } = (N8P (Tym)? (Fy(k) - Fp(k) (5-19b)
" where
:"!
o
q 1 . 2 e
& Fylk) = (1-p') Sa2[vG(1 - Ck)p]dp (5-20a)
i and
. K
‘ 1
.': Fz(k) = (l-p')SaErG((:l - ;k)p‘ + r,k):l SaEG(@.-Ck)p'-Ck)]dp' (5-20b)
:
)
and the normalized parameter (M is defined as
1
J
0 A Tk k k
J g, = = = 3 k=1,...,G-1 (5-20c)
“ k Tﬁ ET; [
2 so that 0 < Tk <1, Some meditation on the functional form of Fz(k) reveals
: that it has a negligible contribution compared to Fl(k), so it will be dropped
f
{s henceforth. From (5-19), we then have that
3 20 8 wfrea 2l . o 2
ollk) = &(NO(x) (V)
‘:
f = N80y Fi(k) = (BT -5, 0 Fylk) (5-21)
which is a fairly simple expression, but also fundamental for the following.
1%
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Let us now return to (5-16). As mentioned, the lack of knowledge
regarding , forces us to noncoherent sampling. Let W, g yzctk)|Lowpass denote
such a sample, which is also defined in (5-7b). We note that this kind of sam-
pling can be implemented via a square-law device, followed by a wideband lowpass
. integrating filter; its bandwidth should be several times larger than the input

. bandwidth B, but still much narrower than twice the carrier frequency. Then
(5-16) and (5-17a) imply that, under Hl’

® W = (st (1 ‘k)z"("?qCTk))z + (Nfiq(fk))2 5 k=1,...,6-1 (5-22)

-5 By virtue of the approximate statistical independence of the second and third
L noise terms in (5-22), {Nk}E;% is a sequence of approximately independent noisy

- samples, upon which the decision is based. As mentioned, this valuable property
?_j of independence gradually diminishes as k + G-1 because the fundamental assump-
:‘. tion in assessing it (i.e., Gaussian equivalent noise) weakens toward the end.

This is also why those latest samples should be ignored. Nonetheless, such a
| property is the key ingredient in the anticipated superiority of the correlator
> versus the radiometer--namely, the fact that additional information can be ex-
ploited by incorporating all those new samples in the decision. Their approx-
imate independence keeps these samples from being statistically useless.

In order to proceed with the evaluation of rule (5-7), we need the
mean and variance of the W 's. From (5-19) and (5-22), we have that the dif-
ference of the means of W, under the two hypotheses, A& (Wi}, is given by

sl ) & ofW[u} - efuglno} = (sTW)? (1 - xi)? (5-23)

: Furthermore, using the independence between Nelq(rk) and Naq(rk) along with the
.'(’- Gaussian assumption yields the variance as

"“{“k} ZVGY‘{(N?QCT 0)2} - z[t{(u‘fq@k))“}_ ;2{(N?q(rk))2}]
v 2E°N4(k) ) °N4(k)] (?_ONz(k)) (5-24)

with oNZ as per (5-21). '
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As seen in (5-23), (5-24) and (5-21), the quantities of interest for
Nk include a multiplicative factor (1 - ck)z. a reflection of the fact that the
integration time reduces proportionally to T A T > TH‘ The insertion of the
coefficients a, in (5-8) purported to remove this factor without essentially
altering the results. Thus, if we define

W W
v 4 k k
w - = (5'25)
k 2 2 2
(T - =) Ty (1 -5y)
it follows from (5-23) and (5-24) that
sefi} = ¢ (5-26a)
and
N 4.2 )
var{wk} = 4(NgB)" F°(K) (5-26b)
while the decision rule (5-7a) reads:
AG ]
Y = "k (5-27)
k=1

We shall now define performance for the correlator in a manner that
is analogous to the radiometer as manifested by (5-6). In other words, within
the Gaussian assumption for Y, performance is quantified by (5-6a), where the
output SNR for the correlator is now

SNREOTT (J{YIHI} j ‘{Y‘HO})Z

out  ~ var{YIHO} (5-28)

We wish to emphasize again that (5-28) is meaningful only when Y possesses a
distribution that is sufficiently close to Gaussian and the variance under
either hypothesis is the same. The latter assumption is justified for very
low-input SNR, while the former can be validated only though simulation. For
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somewhat higher SNR, the proper measure of performance and comparison is the
pair (Pp,Pra); in which case, var{YIHl} is larger than var{YIHo} by a signifi-
cant factor. More discussion on this topic can be found in the following
section.

(ol S ST S B

Based on (5-26), (5-27) and the uncorrelatedness of Hk's, it follows
from (5-28) that

2
SNRCOTT - (1652) - AZGZ .o &
ou s 8 5 6 Yin
4(NgB) kzl Fio(k) 4 > F (k)

or, using the fact that Ty = G'Yin’

out _ -1,_4
SNR orr = A(2,6) G-y (5-29)

where the coefficient A(1,G) is defined as

2

AL G) & —z (5-30)

% > F Ak
k=1

and will be called the "correlator processing gain" or, for brevity, CPG. The
terminology is easily understood if we combine (5-6b) and (5-29) into a ratio:

SNRCOPr >
— e = ALG)y, (5-31)

ra
SNR ¢

The interpretation of (5-31) is that, within the framework of performance estab-
lished herein, the correlator will outperform the radiometer if the product
A(A,G)-YH2 is above unity and vice versa. We note that this product signifies
some kind of utility factor and is separated into two components: (1) A(x,G),
depends on features of the device used (G) and the signal-processing algorithm
employed (A), and (2) Yy = STy/Ng, depends on scenario parameters (signal and
noise strength, hopping duration). Thus, the acronym CPG is naturally attached




"n ’u I. *;_"l | . . ". DA .',"- ‘
Y

¢«

4".J.l . ‘l "l 'l "l .‘.l'l (‘\ . ':'S‘.S‘.¢.s - 8 3

OO
P

A%l @)
-

vt

-
L
| =

\:

to the component (gain), depending on the signal-processing aspects of the
detector. Let us briefly focus on it in the following.

Exact evaluation of A(1,G) unfortunately requires numerical integra-
tion by computer, which somewhat destroys any anticipated insight. However, a
bounding argument can be developed which, in essence, warrantees a minimum value

for A(2,G), namely, Amin(x,e). This minimum value (or lower bound) can be used

in conjunction with (5-31) to warrantee a minimum gain for the correlator versus
the radiometer and is, in fact, very tight to the exact result for low values of
A. The argument is based on the observation that the guantity Fl(k) in (5-20a)
is a monotonically increasing function of the argument B3 thus,

1
Fl(k) <F1(J\G) = f (l-p')Sa2 nG(l-A)pjdp' 3 k=l,...,AG (5-32)
0

since g = A from (5-20c). The inequality in (5-32) can be strengthened by the
following steps:

1
/ (1-p')Sa®[2G(1-2)p" dp'
[* st

1 X G(1-2 ‘
< f SaZEG(H)p]dp' G'l(l-k)'lf( )Saz[nx]dx ;
0 0

< (:‘:']'(1-)‘)'1 /n Saz[nx]dx
0

6~1(1-2)"Y1/2) (5-33)

Thus, from (5-32) and (5-33),

AzG F.2(k) < A6 F,2(a6) < —2
&1 ! 1 46(1-1)2

which, when combined with (5-30), yields

AGLG) > AL (A,6) = A () = A(1-a)? (5-34) :

min




We note that the lower bound Amin depends on A only, while the exact gain A(x,G)
also depends on G. This is just a fortunate coincidence, and indicates that

Amin can be used for every G, as long as G >> 1. Thus, we arrive at the follow-

ing bound:

SNRCOY‘!"
__& > A(l-)\)z YH

rad
SNRout

2 (5-35)

which, as mentioned, should be tight for small A.

In addition to this general bound, we can create a good approximate
formula for the above ratio when G(1-A) >> 1, as follows: since the steps
used to derive (5-33) are, in fact, tight successive approximations, we con-
clude that Fl(k) = G'l(l-kG'l)'l(l/Z), which leads to

AG

AG G
S F 20 = L 1 -1 1
k=1 1 =3 égl (6-k)2 I.m=GE%-A) e

The last summation can be well approximated by the integral

G
1 G
o dx _ 1[1 - A
m=(;(zl-x) n’ é{ ) x_; h G'ETK ) 1:[ © G(1-2)
(1-a

provided that G(1-A)>>1. Substitution into (5-30) leads to

SNREOTT
UL = A1) v, (5-36)
SNR
Out u.'
which differs from the bound (5-35) in the exponent of (1-1). For low A, N
)
(5-35) and (5-36) agree closely. In any case, (5-35) and (5-36) indicate
that the relative merit of the correlator increases proportionally to the b
square of the hop SNR and could therefore reach significant levels, depend- :
ing on the application (coded or uncoded systems, slow or fast hopping, etc.). ;
X
=
N
R R R A SN
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5.1.3 Simulation Results and Discussion A

., l"‘,_‘\ a ..- L

The proposed corralation algorithm plus the radiometer were simulated

]
.
”~

- by computer; a detailed description of this simulation can be found in Appendix \
N I. Here, we shall summarize the findings and discuss them. )
> First, the tightness of the predicted bound (5-35) was examined. The

. M following parameters were chosen so that the theoretical assumptions involved

‘3 in the analysis would be well justified: (1) la:ge time-bandwidth product (G=

0 1000 or 30 d8), (2) small input SNR (¥, < =10 dB), (3) small A (x=0.1) and,
. (4) large number of trials (200), so as to assume statistical confidence. Since .

A . those numbers were in accordance with the assumptions made, any deviations of i
y the simulation from the theory would indicate an error in the modeling process y
y (Gaussianness, etc.). Fortunately, that was not the case, as evidenced by the !
3 closeness of the theoretical and simulation results, as shown in Table 5.1, Y
(M which lists the output SNR difference aSNR (in dB) between (SNR882r>dB and f

?g (SNRSﬂg)dB, both from theory (5-35) and the simulation. In other words, the ‘
d theoretical lower btound from (5-35) is

i ° corr rad \
,, l:ASNR) :[ [sukout (SNRout)d;lLB E(l x)ﬂds + Z(YH)dB (5-37)

.) !

) :

-

For X=0.1, the first term on the right-hand side of (5-37) is equal to -11 dB !
while, for G=]03"(YH)dB = 30 dB +(Yiﬂ)d8' We note that the simulation result :
in Table 5.1 is slightly below its theoretical counterpart (lower bound) for
the first two columns, while it exceeds the latter in the last column. This .
can be attributed to both the many analytical approximations involved and the L
possibility that Y;,, in the first two columns, is insufficiently small. For 3
Yin< - -20 dB, the simulation seems to agree perfectly with the theory. In any 3
case, the gains depicted in Table 5.1 for the correlator range from 9 dB to .
29 dB--definitely a major improvement over the radiometer.

_'}
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’ Next, we Took at the sensitivity of the decision rule (5-27) with E
N respect to the choice of A. This is illustrated in Figure 5.4, where the detec- .
3 tion probability PD is plotted versus A(0 <> € 1) for various values of yHr‘and p
‘e- P?A’ while G =100 is constant. For each set of three curves associated with !
i a single value of Yin® the corresponding values of PFA are 10‘1, 10-4 and 10-6, .
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from top to bottom, respectively. In all cases examined, the trend is clear:
performance is insensitive to changes of X over a very wide range as long as
is neither too small nor too large. So, any A in the range (0.1,0.8) would be
a suitable choice. Although the curves shown in Figure 5.4 are for a particu-
lar choice of ay's (the ones in (5-8)), an identical kind of behavior was also
found for other choices. This is a rather convenient conclusion since one does
not have to worry about optimizing A whenever the constants are changed. Fur-
thermore, it was found as a more general conclusion that the overall performance
(PD’PFA) was insensitive to the particular choice of ay's. Thus, one can set
ak=1l, k=1,...,)G, which would simplify the decision rule to a mere accumulation
(summation) of the power samples W, and a threshold comparison.

A set of simulated design curves for both the radiometer and the cor-
relator are provided in Figure 5.5, parts (a) and (b), respectively. There, Po
is plotted as a function of Yin (dB), for various values of Ppp in the range of
10'1 to 10'6. For comparison purposes, the PFA==10'1 and 10~% curves for both
have been redrawn in Figure 5.6 so that the relative gains of the correlator
versus the radiometer in input SNR can be assessed easier. We reiterate that
direct invocation of (5-36) or (5-31) would not be meaningful in this case,
where G is relatively Tow and Yin is relatively high, because the variance of
the decision statistic under H1 is many times greater than under HO. Thus, any
gains in SNR should be directly read off the operating curves. An alternative
comparison is offered in Figure 5.7, which depicts the familiar "receiver oper-
ating characteristic" (ROC) curves for both systems, parameterized by Yin- The
parameter G was set at G==10% Clearly, for Yin >-20 d8, the correlator will
outperform the radiometer by an amount which increases with Yin-

Finally, let us note that attention should be given to implementing
the almost instantaneous power measurement Nk; this can be accomplished using
a square-law device, followed by a faiirly wide lowpass filter whose bandwidth
is many times that of the observation bandwidth B (1.e., its response time is
a small fraction of B'l). Still, that filter should be narrow compared to the

IF frequency in order to avoid undesirable power measurement errors.

----------------------------
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Radiometer Simulation Results
G = 100
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Figure 5.5(a). Simulated Plot of Pp Versus Yin for the Radiometer,
Parameterized by PFA
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5.2 Wideband Detection of FH/DS in Random Tone Interference

In section 5.1, a scheme was proposed for improving the detection of
frequency-hopping (FH) waveforms in wideband additive Gaussian noise (AWGN)
using samples from the autocorrelation domain. It was shown there that, under
fairly general operational assuvmptions, an approximate gain of n(x,G)YHZ in de-
cision SNR can be achieved over the energy discriminator (radiometer), where
W is the hop SNR. This gain--being defined on a per-band basis--has a direct
positive impact on the overall system detection capability. The proposed algo-
rithm, albeit inferior to the optimal 1ikelihood ratio test, had the advantage
of greatly reduced (hence, manageable) complexity.

The overall approach has been motivated by the recent implementational
feasibility of large time-bandwidth-product/real-time correlators such as SAW
devices. The purpose of this section is to show that, depending on the specific
scenario at hand, the use of such devices can bring about impressive gains in
detector performance, especially when compared to simpler alternatives such as
the radiometer. In particular, we shall consider the case of detecting a fre-
quency-hopping/direct-sequence (FH/DS) hybrid waveform when the dominant compo-
nent of the observation "noise" is random tone interference, arbitrarily located
within the hopping bandwidth. In addition, it will be assumed that the total
power of this tone interference is much greater than that of the background ther-
mal noise, so the latter can be ignored. It will then be shown that, for obser-
vation data with a large time-bandwidth-product G (defined by (5-4)), a very
simple algorithm operating on the output of a real-time autocorrelation device
can achieve almost perfect performance--in stark contrast with the poor perfors
mance of the radiometer.

Hybrid schemes have become increasingly popular spread-spectrum com-
munication choices due to the enhanced antijam margin which they offer. Adding
DS modulation to FH also improves the anti-intercept capability because the
"noiselike" appearance of DS makes detection more difficult. On the other hand,
multiple tones constitute a common model of nonwhite interference and can emerge
in a number of scemarios, i.e., it can be intentional (jamming of -the band) or
unintentional (multiple users in a broadcast environment, adjacent rauar sources,
etc.). It is also conceivable that the tone interference has been deliberately
inserted by the communicator in a pseudorandom manner so as to impede the inter-
ceptor's task, while it can be pseudorandomly avoided by the intended receiver.
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In a1l of the cases previously cited, the tone interference could be
filtered out (notch filtering) and various techniques for doing so effectively
have recently been presented [14]. The key provision of these techniques is,
however, that each tone stays at the notched frequency long enough for the fil-
ter to adapt; in the context of LPI detection, then, fast FH or low-duty-cycle
pulsed interference could present a severe challenge for such systems. It is
also clear that, as the number of interfering tones increases, the required
complexity (number of filters) wou':! soon surpass acceptable 1limits.

Here we address exactly those severe cases wherein the number of
tones per observation interval is both large and arbitrary (random), with un-
known frequencies, durations and phases. It will soon be seen that, in such
environments, the radiometer is doomed to fail as a detector. It therefore
comes as a pleasant surprise to conclude that the autocorrelation-domain algo-
rithm proposed here can provide excellent performance independent of all those
interference parameters. The section is structured as follows: Section 5.2.1
presents the system model and proposed algorithm, while section 5.2.2 proceeds
with the analysis of its performance; that of the radiometer is also outlined
here. Section 5.2.3 provides the simulation results and concludes with a brief
discussion.

5.2.1 System Model and Proposed Algorithm

The overall system structure is similar to that described previously.
Therefore, we shall illuminate only those aspects which are unique to the pres-
ent scenario. Again, our concern is the decision rule performance on a per-
band basis, as defined below. The autocorrelation domain will be employed to
produce a decision statistic since an optimal rule similar to (5.1), would, in
this case, be hard to establish and too complicated to implement.

Let the FH/DS hybrid signal to be detected be represented by s(t) =
V25 c(t) cos wgts where wg is an unknown frequency within the observed spectral
band, c(t) is the DS code of rate R. =Tc"1 and S is the signal power. The un-
known interference consists of M tones (M is a random variable in each observa-
tion interval, which is equal to the hop time'n’=RH‘1), with Ik’ wy and ¢k
denoting, respectively, the power, radian frequency and phase of the kth tone.
The total received signal in (0,Ty), under hypothesis Hy (signal present), is
given by
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M
r(t) = vZ5 c(t) cos wyt + kii JZT cos(u t + 4,) (5-38)

Note the absence of thermal noise in (5-38), as previously discussed. The code
c(t) can be modeled as either a random sequence of independent, identically
distributed +1's with Prlc(t) =1]=0.5, or a PN code with a full period equal
to Ty. As per the ratio N & TH/T R /RH increases (N denotes the number of
code chips per hop), the performance difference becomes insignificant, a fact

also verified by simulation.
Let B denote the input observation bandwidth. The presence of the DS

code implies that B should be at least equal to R or higher, but definitely
much larger than RH Equivalently, the time-bandwidth product G ¢ BT » 1.
Furthermore, for simplicity, we shall assume that all tones have equal power
Ik==I/M,k=1.....M, where I is the total interference power, and they are equi-
spaced within the bandwidth B. In other words, the frequency separation |fy -
fx+1| between adjacent tones equals B/(M+l1), which is much greater than TH‘I.
i.e., lfk k+1| >> T -1, None of the above assumptions is critical in the
forthcoming conclusions they simply ease the analytical burden.

The real-time autocorrelation operation produces the output

T
ylr) = / "r(t) r(t-mdt 5 0<T<T, (5-39)

T

Substituting (5-38) into (5-39) and rearranging redefines y(t) as
I M ud o B8
y(r) = Sy () cosu,r +<W)CTH - 1) mzl cosw t + ‘/_SMI k§1 ne(t) +ngle)] (5-40)

where yc(r) is the code partial-correlation function (a random variable)

T
y i) = / c(t) c(t-r)dt (5-41)

T
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and ng(r),n;;k=1,2,....ﬁ, are approximately Gaussian (via a central-limit-
theorem-type argument), bandpass processes (signal x interference terms)
defined by

n:(t) = G'I((T) cos uT - QE (1) sin T (5-42a)
and
8 M
ng(t) = Z ol k(7)) coswyT 4 Z sinwyT (5-42b)
where
Ty
ai('r) = [ c(t) cos[(mo-uk)t - ¢':Jdt s (5-43a)
T
Q T
Qx) = f c(t) sin[cwo-wk)t-¢ddt : (5-43b)
T
o TH ]
k('c) = j c(t-1) cos[(:mo-mk)t-fbk at (5-43c)
and
Q T ]
Bk(‘t) = / c(t-1) sin[(wo-wk)t-'#k dt (5-43d)
F ]

Before discussing the statistical characterization of the above noise
processes (section 5.2.2), let us examine the noiseless (mean) part of y(t) in
(5-40), as shown in Figure 5.8. Of particular interest here are the envelopes of
the useful signal (small shaded triangle) and the interference (large triangle),
respectively, since the actual components, e.g., the first two terms in (5-40),
are modulated by the unknown frequencies. The structural difference between
the two correlations is evident: the DS code superimposed on each hop creates
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' ¢
X a narrow mean-autocorrelation function for |t| > T, since the expected value N
~
N @ of the function yc(t) in (5-41) is zero. Contrary to that, the interfering
‘ tones correlate for the whole interval [0 ’TH]' Clearly, then, a power (nonco- X
herent) sample at Y =Tc would measure interference only*; this sample could .
) be subtracted from the corresponding one at 0 =0 so that, under Hl’ contains
% the full signal power plus interference. This subtraction would approximately .
‘ cancel the interference contribution at o =0 so that, under Hl’ only the sig- '
': nal would emerge while, under HO’ the statistic would be almost zero. Thus, :
) the adopted decision rule is (see Figure 5.9) 3
» [}
N
' 2 2 Hl '
b s o= YO -y )l 2 s (5-44) :
. LP /| W O 3
) Lp 0 .
; Y
(Al where 89 is a fixed threshold. In the absence of thermal noise, A0 can be set §
" at a very small (positive) level in order to maximize the detection probability. J_
\ The next section shows that the performance resulting from (5-44) is excellent. L
‘ :.‘
. 5.2.2 Performance Analysis '
I‘ r
) We focus here on the statistics of n:(t) and ng(r), defined in (5-42) <
3 and (5-43). Let &{-} and var{-} indicate the mean and variance, respectively. -
A It is then easily shown that !
. |4
| sldof = g} = 0 5 a1 (5-45) H
. 1]
N and that t
-
€ j ] 1)
' var{uk(-r)> = var{ek(r)} = & (ak(-r)) (5-46)
3 <
j In the following, we shall concentrate on offsets tv=mT.; m=0,1,2,...,N. In 3
13 fact, only =0 and t=T_are of interest (see (5-44)). Then lengthy manipula- ¢
31 tions can establish the following facts (for proof, see Appendix J): -
4 :‘
) . 3
‘(4 Any T > T, would also do, especially in the face of some uncer- ;)
‘ tainty about Tc’ L
. §
. e
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(a) The variance in (5-46) is given by
o
o 2y (N-m1 2 )
‘)(“k("‘Tc)) } =T s |"(fo- T (5-47)
<
where Sa(x) ® sin x/x is the sampling function.
(b) Each noise process has mutually uncorrelated inphase and quad-
rature components (therefore, by the Gaussian assumption, independent).
- (c) Noises corresponding to different frequencies (e.g., n:(r) and
n:(r) with k # £) are uncorrelated.
(d) Processes n:(r) and ng(r), however, have different properties,
¢ i.e., n:(r) is a highly correlated process (as a function of t), while ng(r)

generally is not; in fact, samples of ng(r) taken Tc apart could be uncorrelated.
Of the above conclusions, (d) is probably the most interesting from a

performance viewpoint: If the noise ng(r) had been as highly correlated as

° n:(r). the decision rule performance (5-44) would have been perfect since the

1 same* random-noise sample would be obtained at 1= 0 and tv = Tc; thus, they would

3 cancel out. This not being true, a slight degradation in performance is expec-
ted, as was also observed in the simulation. Nonetheless, since the mean part

, of the interference ((second term in (5-40)) does cancel out, the performance of

. this scheme is far superior to that of the radiometer, which is oblivious to
that term. 1In fact, the radiometer output is merely the value y(0), which is
dominated by the power of the random interference (see Figure 5.8). Without
further assistance, it is impossible to determine if there is any signal in the

¢ total observed power since the interference contribution is random and, hence,

]
E unknown.

) As mentioned above, the high correlation of Gk(T) implies that ui(o)-
f ' ai(Tc); j=1,Q. On the other hand, the degree of correlation between Bk(O) and
- € BkUc) varies with the frequency difference Afk = fo - fk' For the special case
E wherein one of the interfering frequencies ka coincides with fo, it is easily
E seen that 8&0(0) z sgo(Tc); j=1,0. Those facts are used in the subsequent

analysis.

Same within a totally insignificant change.
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We can now return to the decision rule (5-44): upon squaring, taking
the difference, lowpass filtering (e.g., rejecting double-frequency terms),
assuming that fk0~=f0 for one frequency and using the above conclusions, it
follows that

A - ;(THZ'YCZCTC)% (ﬁ,—‘)(nz(o)-nz(rc))

LP

+ s‘/% (aio(O) + kgl e,ﬁ(o)) Ty - (ui(Tc) + §1 Blf(Tc))ch'c)

A}

M

(v L% (spt0) - s.i(Tc))] ey (- ) (s

where

M a 8
n(ty = Y nk('r)+n0('r) (5-49)
k=1

is the total BP equivalent noise. Let us note that, at least for the case of
a full PN code period per hop, yc(Tc) is approximately zero, which considerably
simplifies (5-48). Furthermore, even for the random-code model, a comparison
between analysis and simulation for the one-tone case (see next section) has
indicated that the impict of the rv yc(Tc) is unnoticeable; hence, setting
yc(Tc) = 0 seems to be a reasonable approximation for the general case. Still,
a full analysis of (5-48) without further simplifying assumptions is extremely
complicated. In order to gain some insight here, we shall focus on the one-
tone random interference (M=1), with the reasonable conjecture that the multi-
tone case should provide analogous conclusions.

) . Since, in cthis case, B{(Tc) = B{(O) a o{(o) z a{(Tc) s a; and n2(0) =
n"(T¢), it follows from (5-48) that

2
T
A = .C.S_H_)_ 14+ 2y ‘1(1+2 nn al,normﬂ (5-50)
2

I




where we have defined the signal-to-interference ratio v g S/1 and the
normalized random variable

§: ch (5-51)

a T
a & B cos ¢
1,norm T T; 1S

H

In (5-51), cn;n-l,....N are the code chips and ¢1 is the random phase of the
interference. Clearly, under Ho. A=( with probability 1. Under Hl, it is
shown in Appendix K that

2
i) - @ (e

and
varfal } 2(sT)* v ) (5-52b)

Based on (5-52) and the Gaussian assumption about A, the performance of this
decision scheme is predicted by the detection probability

=
Py = 1- Q[V’Zl(% ¥ ”1-] 'Ao*ﬂ (5-53)

where A0*=-Aq/%STH)2 is a normalized threshold and Q(x) is the Gaussian inte-
gral function. In the absence of thermal noise, Ao* can be set arbitrarily
close to zero; thus, it always yields the zero false-alarm rate PFA"O' In
practice, Ao* would be set according to the thermal-noise level and the degree
of uncertainty about the power S of the detected signalT.

The performance predicted by (5-53) is indeed excellent. We note
that increasing the interference power (hence, increasing vy-1) actually helps
detection instead of deterring it, while it has no effect on false alarm. For
instance, it can be shown that, if N > 60, then Pgorr > 99%, independently of

tAlternatively. this can be expressed in terms of the uncertainty
regarding the transmitter/intercept receiver's true distance.

.......



Y1, as long as Ap* € 0.4, i.e., one can tolerate 40% uncertainty about the
signal power and still expect excellent detection capabilities, regardless of
the interference power. The above conclusion is rather insensitive to N in
that, for N =10, the corresponding minimum P;orr is 90%.

The radiometer performance (shown in Figure 5.2) is easier to analyze
for an arbitrary M and is based on the fact that its output Yrad =y(0) can be
written as

M
Yoaqg = STy *+ 1Ty + zﬂ (él a:(o)) (5-54)

Let M x be the maximum number of tones which can be expected in any hop. Here,
for simplicity, we consider only the case "max =1, where Prob[one interfering
tone] = Pr[no inicrfering tone] = 1/2 for each hop. Assuming that the thresh-
old Y, is set at YO‘IITH’ 1)) thatf PFA'O’ it can then be shown that (see
Appendix L)

1-%0[ —;lJ,ifvln
rad (5-55)

A FY (S0 A

Thus, the obtainable performance decreases with decreasing signal-to-interference
ratio Y1 and in the limit

rad _ 1 - -
1im Pp =z (me =1 (5-56)
Y1 +0

which is certainly poor compared to P;orr. It has also been shown that the ra-

diometer performance is a decreasing function of "max so that the above results
constitute an upper bound for the general case. Finally, we note that the

TThis is selected so as to match the zero Pep Of the correlator;
another choice of Y0 would lead to PFA=0.5.
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question of threshold setting is much more crucial for the radiometer than the
correlator since the performance of the latter is effectively independent of
the jamming power.

5.2.3 Simulation Results and Discussion

The correlator with one tone interference was simulated by computer;
the results shown in Figure 5.10 are based on 10,000 independent trials. (For
simulation details, consult Appendix M.) Also shown in this figure are the an-
alytical predictions (dotted 1ines) whose agreement with the simulation is
quite striking, even for such low values of N as N=3 and N=10. Since detec-
tion probability is monotonically increasing with N (see (5-53)), those values
represent worst-case designs which nonetheless yield excellent performance re-
sults. It was somewhat surprising to find that the Gaussian model provides
such an accurate analytical prediction, even for N=3; furthermore, setting
¥c(Tc) equal to zero proved to be a well-justified simplification. Note that
no false alarm was observed (PFp = 0) and that performance is practically insen-
sitive to the amount of interference inserted. In contrast, the radiometer
performance (as evidence by (5-55{)deteriorates rapidly with decreasing S/I, as
expected. Finally, let us mention that the performance shown in Figure 5.10 is
for a nonoptimized (arbitrarily chosen) threshold Ao*'-SZTHZ/h. In the absence
of thermal noise, further improvement can be attained for the correlator by de-
creasing A" to a very small (but positive) value.

Although analysis and simulation are not yet available for the multi-
tone case, it is anticipated that the gap between the radiometer and the corre-
lator performances will increase as the interference-to-noise ratio increases,
independently of "max' That again is due to the relative insensitivity of the
correlator to the interference nuisance parameters.

Comments pertaining to the power measurement of (5-44) are the same
as those in section 5.1.3. Furthermore, we note that, if the carrier frequency
fy of the signal sought is known, narrow bandpass filtering of the output y(t)
in (5-40) prior to the power measurement will further enhance performance.

As mentioned, the theory of this section does not include thermal
noise. The determination, analytical evaluation and simulation of algorithms
which operate satisfactorily in a mixed environment (i.e., both thermal noise
and random interference) will be the topic of future research.
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APPENDIX A
PROOF OF EQUATION (3-8)

Let us start from (3-5), i.e.,

N H

exp {-NY 2 N 1

S Y exp 2/5 r.c ‘2 A (A-1)
<1 SRR

A(r(t» =

with yc as per (3-6), Cij denoting the jth chip of the ith code pattern and

ry as per (3-7). ConsiderNthe N-dimensional linear space consisting of all bi-
nary patterns gi;i=1,...,2 of length N. Now observe that this space can be
divided into two disjoint complementary subsets, each of cardinality ZN'I, by
the rule that, for each possible vector <y belonging to one of the subsets,

~C; belongs to the other subset. Exactly which vectors ¢y are included in which
subset is immaterial as long as the above rule holds. We can now perform the
summation in (A-1) ovei one of the two complementary subsets instead of the
whole linear space, with the equivalent rule.

2 cosh (ﬁ—/—s-) rec,| 2 A (A-2)
i=1 0 H0
ie®

where r g (rl,...,rN)gs {s one of the aforementioned disjoint subsets and any
resulting scale factors are absorbed into the threshold Ab. In (A-2), cosh(x)
is the hyperbolic cosine function

X -
cosh(x) = E—i}fi—- (A-3)

Since cosh{(x) is an even function of x, the summation in (A-2) can be extended
over the whole linear space

v e




C
A2
~
“~
N N "
. 2 1
Lo S cosh (QN/S__ r_‘-t_:i) 2 A, (A-4)
¢ i=1 0 Hg
N
3 , - (N) (N) -
o In order to proceed, we first need to introduce the superscripts r and A -
4{ L which will indicate the length of the corresponding vectors, and then prove
i the following: g
i Lemma A. [t is true that: :‘
v
LY ‘ .
ZN
: N N
- 2. cosh (g( )-g( )) - A Tr cosh(ry) (A-5)
~ i=1 i=j
_: .
( o Proof: The proof is by induction. First, let N=1. Then,
' 2 1), (1) .
o S cosh (r( .C ) = cosh(rl) +cosh (-r,) = 2cosh(r1) (A-6) ;
i=1 T *
¢ 1
i since cosh(x) is even function. Thus, (A-5) is satisfied for N=1. Next, assume _
N that it is true for N=k, i.e., !
. ,
: 2! k)_(k) k X
) cosh (r( -C} ) = 20 J[ cosh (r ) (A-7) N
: - = . J X
: _ i=1 j=1 :
and prove it for N=k+l. Indeed,
2! (ke1), (ko) 2 (K), (k), (k) :
k+1) (k+1 _ k) (k) ( k) (k .
g cosh ( ) = Z [osh( k+1) + cosh rk+l)]
i=1 i=1
¢
§
(A-8) &
o
2
2, .
2
$
’ )
2 ]
1
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But,

a+b -a=b, a-b -a+b
cosh(a+b) +cosh(a-b) & te ;e te

b, .-b -b b,.-b
ea(e +e ) + 2 (e"-+e ) = (ea +e-a)(e +te )

2 cosh(a)cosh(b)

which, upon substitution in (A-8), yields

k+l 2k
2 cosh(r_(k+1). g_gkﬂ)) = 3 2 cosh(r_(k). ggk)) cosh(r
k=1

i=1

2
k+1)

2cosh(rk+1)2 Cosh(_(k) (k))

K X kel K
2 cosh(rk+l)2 }J; cosh(rj) =2 'rr'cosh( J+1)(A-IO)

where the truth of (A-8) has been used. Equation (A-10) completes the proof of
Lemma A.
If Lemma A is applied to (A-4), it renders it equivalent to

H

N Trcosh (?ﬁg )*%IA'O (A-11)

0
0

which is (3-8).
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APPENDIX B
) PROOF OF EQUATION (3-10)
Let us rewrite the decision rule (3-9) as
® N '2
AN = 2: Y Ab -
- where the independent, identically distributed random variables (iid rv's) yj 8
rj2 assume the form
n.2 under HO
& (v§ Tocs* "j) under H,
In (3-14), nj represents the Gaussian rv
e
T,
= nI(t) dt (B-3)
(3-1)T,
¢

whose statistics are independent of j.
A precise analysis should account for the exact distribution of yj

under either hypothesis. So, for instance, under HO' yj is chi-squared rv
c with N degrees of freedom. For large N (of the order of hundreds or more, that
is the practical case), very satisfactory approximate results can be obtained
which circumvent the difficulties of an exact, but enormously complicated, anal-
ysis. This is done by invoking a central-1imit-type argument: The decision
statistic A, being the sum of a large number of iid rv's yj. is approximately
Gaussian distributed, with mean

¢§A1sz 2 quyj‘Hki s ka0,1 (B-4a)

and variance

» ‘f.’r"

LRy -
a‘:.. A 5'\':. ;

FLITICIC I

y n‘. - :' ".:\

4

.3, 8,
N

)

VWA
o T YL

1’"’ " 'I

r
1 4

.

"

o]

. ' v,
W L

&

.&(.-rle . -4

AL
A

@’

[ Ny



var;KIHk% = N variyj|Hk‘ ;  k=0,1 (B-4b)

under either hypothesis. Thus, having the second-order statistics of the in-
dividual rv's yj and, subsequently, of A' from (B-1) enables us to determine
performance immediately.

Let

m = /s‘Tc ;5 8k (B-5)

so that

= 2 = 2 2 -
¥ (m + nj) m- o+ n; + 2mnj (e-6)

Furthermore, the Gaussian rv "j has zerc .~e2° and variance

2 _ ] . Oc _
n T d?%"j % 2 (8-7)
Thus, from (B-6),
N, T
2.2 _ er? 0 'c
"H w2 ST St
_(N T) 1+-.-ST°6 = (N, T \(L+ (B-8)
0 'c/ \Z "W, ki (No c)(_ Yedk1 B

Finally,

variyj§= varim2 + "j2 + 2mnj§ = var;nj2 + 2mnj§ = varinjzz + 4m2 var%njz (B-9)

since the random variables n.2 and nj are uncorrelated Gﬂinj3$ = 0). Thus,
from (B-7) and (B-9),

_ 4 4 2 2._ 2 2 - 2 -
varfysf = (30} o, ) +4n% %= 20, E’n + Zmﬂ (NoT) B+ zycakﬂ (B-10)

Equation (3-10) results from combining (B-8) and (B-10) with (B-4).




APPENDIX C
PROOF OF EQUATION (3-20)

Let the received waveform be

V3D ¢ p(t - JTc) cos(upt + ¢J) +n(t) (H))

jz-m

r(t) 0<t<T, (C-1)

n(t) (Ho)

where ;¢j£ is a sequence of independent phases and the synchronous model (e = 0)
is used. Llet c = [?I'CZ""’Cﬁ] and ¢ = [@1,¢2,...,¢@] denote the random vec-
tors whose components are the successive random chip and phase values, respec-
tively. Then, by virtue of the assumed independence, the generalized likeli-
hood ratio reduces to

fr(t)|H ,c.e s 0KtLT)
& &
ce f(r(t)]Hy)

Ar(t)

N fr(t)|HysCi00s (J-1)T. <t<JT
‘Traj%{(r [Hyocyegs (-1T Jc)}

j=1 ¢ f(r(t)lHo)

N flr(t)|HyoC 595 (§-1)T. <t 3T
= T &. & (e My ey gy LT Jc)l

j=1 3 J F(r(t)[Ho) 5

x

Blbionlts

j=l 0 Ho

where the jth chip-interval envelope rj is given by
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€2

(C-3)

and ljs rQj have been defined i» (3-18). Furthermore, we note that, although
rIj and er depend on cj = ] through the combination of (3-18) and (C-1), their
squares do not (simp]y because 9; = 1). Thus, rj of (C-3) is independent of
cj, which means that

%3 - 2/5
%; to( ‘”a‘)( : ‘o(wo—"j)

substituting (C-4) into (C-2) yields
j=1

LT 25\ Hh
A(r(t» = exp{ NYC} T I (NE— rj) 2 A
Ho

whose equivalent logarithmic version is (3-20).
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APPENDIX D

PROOF OF EQUATION (3-23)

A Gaussian-approximation-based analysis of the low-SNR, chip-noncoherent
detector, illustrated in Figure 3.3, can be performed following guidelines similar
to those in Appendix B, as follows: Let the bandpass AWGN n(t) be represented by

n(t) = /Z{n;(t) cos ugt - mo(t) sin ugt (0-1)

where nI(t) and nQ(t) are baseband, independent, Gaussian processes with a flat
one-sided PSD of N0 W/Hz each. Conditioned on the unknown phase ’j and the
+1-chip c; of the interval (j-l)Tc >t2 ch, the inphase and quadrature variables

ry  and rq; of (3-18) are Gaussian with means

J

{r13|¢ »C } = AT, €5 &1 COS &

j=1,2,...,N
0.1 (b-2)
"{le"j’cj} = N T. €5 & sin ¢

and common variance %f

NOTc

2 A
or = var{rlj} = var{rqj} = == (D-3)
where le was defined in (3-10c). Thus, averaging the phase* ‘j' it follows
that each of the independent envelope rv's ry of (3-21) has, under Hy» a Rician
distribution

O AR I O R s O A L P T T P W R A NI L e '.'\'.' T \ Y "\f G s

*
Again it is easily seen that the value of ¢, becomes irrelevant due
to the squaring. J

{

s 2O

AN
P

Y™ » W
s
\J

%X S )‘:b‘;r

g,

(X XAXANS
Fom

oY AL

.----
Lo - o i - T

e

N BY,
o o

LR e
z=ge}

L) .‘0.. I.n N



Assuming that an instantaneous power measurement can be formed at
time t = 0 and ¢ = Tc’ we have the decision rule:

2 Hy
A = P(0) - (N”T) P(Te) £ 4 (M-11)
Ho
with P(t) the power at time t and with
57,2
The factor
N )2
N-T
is used to make A = 0 under H,. Each chip of c(t) is modeled as an independent

0
random variable with values +1, each with probability 0.5.

Figure 5.10 from the text presents the probability of detection (Pp)
for various values of N at a false-alarm probability of zero. Each point used
to determine the plot of PD utilized 10,000 trial runs. Besides the code se-
quence, the phase ¢, was randomized over 0 to 2r radians.
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r i r 2 r
firy]hy) = ;g- expl: %(_42. + ZYC) 10(—01 \/Wc') (ry20) J=1,2,....N  (0-4)

[~

where y_ is the predetection SNR while, under H, (1.e., signal absent, v_ = 0),

(D-4) reduces to a Rayleigh distribution ~

r r.2
f (rj|H0) = ;g» exp[— -2—‘22-] (rj> 0) (D-5)

c

Therefore, the statistics of the decision rv V/A' in (3-22), being the square
root of the sum of N iid rv's, can be precisely found. For example, under Ho,
it is a chi-squared rv with 2N degrees of freedom, resulting in a false-alarm
probability

Pea = N-1)! b3 -1 exp[-X]dx = 1 - (incomplete Gamma function) (D-6)

while the corresponding detection probability is given in terms of the general-
ized Marcum Q function

N-1 2, 2
Pp = Qylvaxg) = fx(%) exp(— x—;*—) Inoq(¥x)dx (0-7)
X
0

In the above equations, Xq is a normalized threshold

Xg = \/g (D-8a)

while

[2NE
[o
Voyms e (0-80)
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D3

Although the above results are exact, they are cumbersome to use from
a computational viewpoint, expecially for large N (N>100). Besides, the Gaus-
sian approximation about A' becomes sufficiently tight in that region and thus
emerges as an attractive and simple tool.

Let us start from the fact that

o= /S'T c

] j k1cos¢ + “Ij (D-9a)

and

roj = /Schjskl sin¢'j +ngy (D-9b)

In (D-9), the Gaussian rv's npy and ngy are defined by
iT

ng = ‘ nI(t) dt (D-10a)
R 159
and
3T,
(G-1T,

and are, therefore, mutually independent, each with zero mean and variance onz .
Then, the squared envelope rjz is

2 . 2 2 _ 2 2 2

It immediately follows that

zesk1+2q2 = ST 2 g + NT, = (NgT) (1 + ¥, 8 ) (0-12)

‘{"jz} = ST n o'c 0'c ¢ %

c
which is (3-23a).
In order to calculate the variance of rj in (D-11), we note that the

first term is a constant (thus, it can be neglected), while the second, third
and fourth terms are pairwise uncorrelated. This is because: (a) nljzand anZ
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D4

are functions of independent rv's and, (b) the fourth term includes both cJ and
*j’ which are independent of the noise and zero mean. As a conclusion,

var{er} 4 ‘{(er . ‘{rj?})Z} = Yar{n1j2}+ var{anZ}

2§
+45T. o var{nlj cos¢j + an sin¢j}
4 2 2 . 2 3
= 4o +4src . 84 (NOTC) +2$Tc No 811
2
= (NgT.) 2 + ZYchl)

since

var{cos ¢j} = var{sin ¢j} = -%

Equation (D-13) is identical to equation (3-23b).
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First, let us note that, once Tc
" derivable from equation (3-10), i.e.,

J{rij'Hk} )

and

APPENDIX E

PROOF OF EQUATIONS (3-44) and (3-45)

is substituted by Tc/2, (3-43) is

N.T ST N.T
0'¢c 1 0c
—2—(2 m‘u)’T(“”kl)

2

i) (5 (13 ) - 000

kl 4

as per (3-43). We shall now show that

and

Consider the situation in Figure E.1.

where noises nj2 and "j+1,1 are mutually independent, as are cj and ¢

Thus,

Tj41,1

e{r‘- Hk;e=0'} = 0
- st 2
"{rjl rj2| Hk;e=0} = —:— 81

T
- c
rjp = /5'(7) S5 81 * Mj2
(%)
S\ C5+1 %K1 T nja11

T\2

(

1
7t chkl)

(E-1)

(E-2)

From (3-41) it follows that

(E-3)

(E-4)

j+l°

s, T} ” S('Zc') o dlegegattofmp ) - 0

In an analogous way,

.
] o P

(E-5)

SR AMGEAEAR SRR GIRNES LGN LGS TS LY




A i

el

o
w

b P A [ PR

By~ SNDE AORNNAILE Y SoBIEe AN TS M 1 | B -] Pl LA

0 =3 pue (Juasaud [eubts) Ty bupwnssy ¢s,f4 jo uoljtutyag “1°3 aunblL 4

[N ]

~
ALY

.
]

»
WG

\..\

"'1“"'.
* ..



.......................... .

¥
-

RIS S Srgurt e S e 2 atia 2 adABA A MCMGS JRSAE R I ARADATABAGA LSS 20 3 e IL I AL AL ALLAR AL SERLATACAC AL LA WL ALY

- .
‘.
g
‘e
g
.

which, combined with (E-3) yields

\ 2 2
y ST ST
. _ c c _
&{ri ri2} - = fat ‘{“51 "2} ! (E-6)
Y by virtue of independence between njl and "j2' Finally, substituting (3-43)
§
Y and (3-44) into (3-42b) yields :
-l A = , 2 "
> &{r} N2 a{rn } + J'{rjlrjzﬂ N
K4
T 2
(N,T.) ST ;
! _ 0Oc c )
z = N (1 + Y, skl) + = skl] :
I— »
& NA.T ) u »
{ - 0c s c
’"(Z' 1+ 7 k1+TskJ '
N-TAT
- 0Oc 3 - :-
" = N‘\T) 1+ (3) v 5k1] (E-7) :
, which is (3-45). X
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APPENDIX F

PROOF OF EQUATION (3-46)

We follow a procedure similar to Appendix E; however, the picture is
changed to Figure F.l, under the assumption of a worst epoch € = 1/4. Then, we
can write that

T
= _C -
‘2 " /g(z)cj %1t " (F-1)
and
)
T St [cj-l +cj] t (F-2)
Note that ri2 is identical to (E-3); thus, d{rjzzIHk;e=1/4} is as per (3-43).
Furthermore,

g seetra) = (3) oy Msee1o Agpnef + o %Mo tgseed] g

where the conditioning events A_ . and Ayige refer to C5-1 and <5 having the
same or a different sign. Clearly,

Pr {Asame} = P {Adiff} - %’ (F-4)

a fact used in (F-3). Let us now note that, under Adiff’ the mean of r.. is

ji
zero while, under A »it is equal to /S'TC/Z. Thus,

same
N.T
"{"uzl“k‘“l“} - (,} (—%-i)(1 g 51) * (“o:c) = (EDET&)E + % A 5k1:l (F-5)

In exactly the same way,

5(132‘) A ISERAY LR AR
) (%)(131‘:)%1 - (N04TC)(12Q)6'<1

which completes the proof of (3-46).

"{”J'l "2 l"k;€=1/4}
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APPENDIX G

A PROOF OF EQUATION (3-63)

Let

N H
A= D Y. 2 A (6-1)
1 g 0

K
. (M (@) _
Yy orory Ty (e-2)
and rj(i);i=1,2 is given by (3-62b). Then,
<
(1) 5 (1)
® where nj(l) and n.(z) are zero mean, mutually independent Gaussian rv's with
common variance °n2 = NoT_/2. From (6-2) and (G-3), it follows that
. 2 (1) (2)) (1) _ (2) .
. ¥; ST, le + |/S'Tc cj 811 (nj + n + n n (G-4)
Thus,
= 2 -
c a{yj} = ST &y = (NOTc)Yc S1 (6-5)
which justifies (3-63a). Furthermore,
- 2 (1) (2) [ (1) (2)}
7 var{yj} = S TC 81 varznj + nj + var nJ. nj
LN
2
ST
_ 2 2 4 in: c
= ST O 29 *op = 4o (7)+ 20 2 %
n

¢ (NOTc)ZB' ¥ e le:l

as per (3-63b).
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§ ® STATISTICAL CHARACTERIZATION OF NOISE PROCESSES
; N&9(z) AND NE€9(t) R
I Q .
w2,
. ‘1’
- We define Neq(r) and Ngq(-r) as per (5-17) and (5-12). It then follows »
from (5-13), (5-14) and (5-15) that N© (Tk) NQ (Tk:),rk-kB -1 are zero-mean o
random variables, i.e., (5-18). Furthermore by virtue of a central-limit- "
type argument (summations of a large number of rv's), they are assumed to be 3\-
v approximately Gaussian. '
We shall first show that Neq(rk) and N (r .) are uncorrelated for -
y every k and j; in which case, they are also approx1mate1y independent (due to \'_
‘ the Gaussian assumption). Indeed, from (5-17), 8¢
) .
) Mol b = @ N () Npgley O + @ Pt Nigle ) N
1 j 114Tk) Nt QL) M1q(™; =
M " M0 Ml AteC0 My () ;
. Let us consider the first term on the right-hand side of (H-1); a similar line :;
, of argument applies to the next three terms. By definition, 3

 J
Tw TH 3
‘ &{N11(r) V(i) = f f &{n (£ (- mdn Ctdngtymr D dt dt,  (4-2) 3
T T ~
-~
C

2
However, n.(t) is independent of n,(t), which implies that the integrand of 4
(H-2) contains the factor e{nQ(tz -‘rj)}, which is zero. Thus, "

%
. 4@

&N (r) Npg(ep} = 0 (H-3) R,

wt

< Along with (H-1) and the above remarks, (H-3) establishes the uncorrelatedness ;'.:j

eq eq ®

t of NI (‘[‘k) and NQ (-;J.). 2
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Let us now consider N?q(jki)and N?q(rkz) for tyy # 1k,. We have that

"{"?QCTKDN?QCTQ)} = ‘{"IICTkl)"IIC‘kz)}""{"QQ(Tkﬂ"QQC‘kz)}

* "{"IIC‘kl)"QQC‘kz)}+ "{"QQC‘kO"IIC‘kz)} (H-4)
But,

T AT
"{NIICTkl)NIICTkz)} - _/H_/H e{nlctl)"lctl'Tkl)"ICtZD"I(tZ'Tkz)}dtthz
", k1 ke (H-5)

We shall approximate the integral (H-5) as the double sum

G G
G{NII(Tkl)NH(th)} = (Ar)2 kzk Zkg{nl(k)nI(k-kl)nI(m)nI(m-kz)} (H-6)
kq #k
1772

where At =17 =p"1, Approximating integrals as per (H-5) by summation is a com-
mon and well-founded practice. We note that nI(k) and nI(k-k]) are independent
rv's since k1 #0, as are ny(m) and ny(m-kz). Furthermore, due to the indepen-
dence of the rv's involved, the expectation in (H-6) will be zero whenever all
four sampling times k, k-ky, m, m-k2 are pairwise different, as shown in Figure
H.1(a). If we assume that ky<k,, we then observe that the three remaining
cases depicted in Figure H.1 are (b) k-ky =m-k,; in which case, k#m, or (c) k=m;
in which case, k-k1 #m-kz, or (d) k=|n-k2; in which case, k-klfm. In all those
cases, the common conclusion is that at least two rv's exist which do not coin-
cide with the others. The net result is that the expectation in (H-6) will
a.--ys be zero, establishing the approximate uncorrelatedness of Nyj(tky) and
NII(Tkz)- The same exact argument establishes that JgNQQCTki) NQQ(TkZ) 20,
while it is even easier to show that €3Nll(rkl) NQQCTkZ)i z&: NQQCrkl)Nu(rkz)i
2 0. Thus all of the above can be combined in (H-4) to illustrate that differ-
ent samples (tkq # Tkp) of the same process N?q(r) are approximately uncorrelated.
It can similarly be demonstrated that the same is true for Ngq(r), defined in
(5-17¢).
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Finally, we are concerned with the variance of N?q(rg) and Ngq(rg),
i.e., (5-19). Clearly, since the respective means are zero, those variances
coincide with the second moments. Furthermore,

2 .
o) (Ws) | = #{MAC0l + efngnch = 2elvACeo) (H-7)

But,

T, T
/H/Hé’,nICtDnl(tl'Tk)"I(t?-)"I(tZ"k)%dtldt?

% Tk

T i §
] /;{nl(t'1+tk)nl(t'l)nl(t‘2+tk)n1 (t'z)} dty dt, (H-8)
0

¢ {" IZI(TK)}

where a simple change of variables has been performed. We shall now use a fa-
miliar property of four jointly Gaussian rv's {xi}g=1, namely, that [15]

4

=1 ""f = a{xg} elxgg |+ olxpalalon |+ olxrfabon)  (9)

Applying (H-9) into (H-8) results in (for any t):

TH-t
J{Nil(r)} - / 0[ J{nI(t'lﬂ)nI(tD} c{nI(t‘zﬂ)nI(tD} dt}dt}

TH-t

* [fAmcromctzoteince ncep)eryer;
T:'T
+ / f d’{nl(t'lh)nlct'z)}a{nlct']) nI(t'2+r)} dt!dt)
0
2 2 T o
= RE (1) (Ty-9) +ff R (t)-th) dt)dt)

g
Tu-
+ ] j R (t]-totD) Ry (t]-th=1) dtjdty’ (H-10)
0
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where R (1) = dﬂnl(t)nl(t+r)} is the correlation function of n;(t), as per
(5-13).

Equation (H-10) can be further simplified. First, we note that, for
TE oS k81, R, (tk' = 0, so the first term drops out. Furthermore, one can
employ the even symmetry of Rnn(t), i.e., the fact that Rnn(‘t) = Rnn(-r), in or-
der to reduce the two-dimensional integrals to one-dimensional ones (see [15],
page 325 for details). The result is then

2
Ty ,-T N.B
J{NIZI(TK)}= 2 / H k(TH-tk-p)<—g—-) Sa®(wBo)do
0
Tyt N03)2 -
+ 2 T, - - — Sa[ + ]Sa[ -7,)dp H-11
/ (T4 - -9 ” wB(p+1)) mB(p TID_J ( )
0
With the change of variables
' = p -
A "R (12

and defining the normalized parameter Gy as

(H-13)

we can rewrite (H-11) as

N.B) 2 1
SikIeh! %LCTH“QZ 6/ (1-5")50° "B"'CTH“O]“"'

, /‘1 (1-0')sa EB(O -CTH--ck)+-rk):l Sa EB(Q "(Th=7) -tkﬁdp.

0
MNoB) (T - 1) 2
2

(F1(k) + Fy(k)) (H-14)

S RTIIN A LA B e St S a Sm e % A e np et e ta et aa e,
T e S T G S oy S T A O N O O AR R T N PR T 00
» - ~ L » LA ANN L) . N ) . Y B,

‘. .f -,—

Y,

LV Pl

S

~Q

PPV,



' H6
:
2 ® where
)
: ! 2 k) | 1 2 T 3
Fl(k) = (1-p')Sa 1rBTH 1 - ) dp' = (1-p')Sa wG(l-ck)p:]dp (H-15) :
P, and i
. 4
- . :
. Folk) = J (1-0') Sa[s6(o'(1-t) + 5 )]sa[6(o 10 - 5 )|ao’  (H-16) :
' s
exactly as in (5-20). Combining (H-14) with (H-7) yields (5-19a). y
) .
: ¢ Quite similarly, it follows from (5-17c) that :
: 2 X
: a?(ngq(r)) s = zc{n";o(r)} - za{NIQ(r)NQI(r)} (H-17) ,
L .
1 But, N
‘- ‘ Ty "‘
¢ 2
= "3"10(’" - f / #{n (t1)ng(t1-I(t2)ng (-t ey gty X
T |
W, , Ty-1 ) {
- j‘/‘ RS (t1-t,)dt dt, = f /' RE (ti-t5) dtjdt) (H-18)
T 0 \
~ S,
E since n;(t) and ny(t) are independent, with the same correlation function. The
integral in (H-18) is identical to the second term in (H-10), which corresponds ‘I{
to the Fl(k) term in (H-14). Furthermore, Q
v
M TH 3
4 = X
2 N 1) Mgy} = [ [ ctryngCti-DIng(tz) mgCtamo} dtet, :
N T
;‘. TH-T .i
= [ . [} | BT [ 1 -
\ f Ron(t] = t5 * ©)Rop(t] - tp - )dtjdt) (H-19) |
3 0 ;

O
LIw
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which is identical to the third term in (H-10) corresponding to the F,(k)
term in (H-14). Combining the above with (H-17) (note the minus sign of the

second term) results in

14

7.

NN

A

JgNSq(‘)zt = O®(Ty - ‘k)z (Fy(k) - Fp(k)) (H-20)

: ‘u l‘.r.:."

. -8 0,
R

as per (5-19b). .
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APPENDIX I

COMPUTER SIMULATIONS OF THE RADIOMETER AND AUTOCORRELATION TECHNIQUES

FOR DETECTING FH SIGNALS IN GAUSSIAN NOISE

1.0 INTRODUCTION

Theoretical performances of the autocorrelation technique and the
conventional radiometer approach in detecting frequency-hopped (FH) signals
9 in Gaussian noise, discussed in earlier sections of this report, have been
verified through computer simulation. The simulation results are summarized
in this appendix. Close agreement was observed between theoretical predic-
tions and simulation results.

2.0 SYSTEM MODE!.

The system model studied here is illustrated in Figure I.1. The
total spread bandwidth Ns is segmented into M B-Hz bands, where M = HS/B.
9 The received signal from each of these B-Hz bands is processed by a waveform
processor which determines whether or not an FH signal is present in that seg-
ment of the spread bandwidth during the time interval of observation. The
decisions made by the waveform processors are accumulated to form the final
decision with respect to whether or not an FH signal is present.

Two forms of waveform processing are studied by computer simulation:
(1) the radiometer, and (2) the correlation detector. In each case, the wave-
form processor output statistics (mean and variance) are collected under either
hypothesis regardless of whether or not the signal is present. The channel is
assumed to be corrupted by additive Gaussian noise in all cases under consider-
ation herein.

Based on the waveform processor-output statistics, the detector out-
put signal-to-noise ratio (SNR) defined here as

SNR, = E(YIHO)'J(YIHJ]Z (1-1)
0 var(Y]HO)

is first computed as a function of the bandwidth-observation time product BTH
and the input SNR Yin? which is defined by
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In (I-1) and (I-2), the following notations are used:

1!(Y|H0) = mean value of the waveform processor output when signal is not
present

qr(YlHl) = mean value of the waveform processor output when signal is present

var(Y|Hy

variance of the waveform processor output when signal is absent

S = received power of the FH signal to be detected

B = input bandwidth of the waveform processor

TH = the FH time

N0 = one-sided noise power spectral density (PSD) of the receiver.

The input SNR (v, ) is related to the hop SNR (v,) by the BT, product, as
follows:

ST,
W W, T CTW Yin (1-3)

Also computed in this appendix are the probabilities of detection
(Pp) and false alarm (Pgp) of each of the waveform detectors. They are related
to the first two moments of Y by:

- #(Y|H
Pen = 7-gerf [A———"o £Cl 0)] (1-4)

‘/ 2 var(Y[Hy)

and
1 1 Ay - &(Y[H)]
Py = » -5 erf | —m————e (1-5)
D 272 [‘/2 var(Y]HD

In (I-4) and (I-5), Ag denotes the threshold setting and erf denotes the error
function

RT A -
Ay ;f'”

". o
Bt

W ETE Y
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e
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X 2
erf(x) = 2 / et dt (1-6)
r 0

For each desired PFA’ the probability of detection PD can also be determined,
as follows:

- -1 - N
. . % % o E(vwo) £(Y[H) + merf (1 zpFA)J (1)
V2 var(Y [Hy)

Gaussian approximations have been made on the waveform processor out-
put Y in arriving at the expressions for PD and PFA in (I-4) and (I1-5). This
is justified by the fact that Y is the sum of a large number (»BTy) of indepen-
dent random variables (see next section) and by invoking the central-limit
theorem.

3.0 RADIOMETER SIMULATION

For the case of the radiometer, the waveform processor performs the
following operation on the received signal r(t) to obtain the detector-output
variable Y:

.
Y = T]'—/sz(t) dt (1-8)
Ha

where p(t) is the envelope of the received bandpass signal r(t), given as

r(t) = V25 cos wot + 2 nI(t) cos wgt - vZ nQ(t) sin ugt (1-9)

In (1-9), wy is the center frequency of the received signal and n; and ng are
the quadrature components of the bandpass noise process with a bandwidth B.
Thus, n and " are independent, zero-mean Gaussian processes having one-sided
noise PSD N0 and variances NOB/Z. We assume here that ©g coincides with the
center frequency of the BPF with bandwidth B (see Figure 1.1) so that there is
no filtering loss on the received pulse. This assumption is not unduly restric-
tive since most channels in the bandwidth B will not experience excessive fil-
tering loss except for the ones near the band edges.

-------
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Since r(t) is a bandpass process, it can be expressed as .%
éj
Juat
r(t) = Im:/f u(t) e 0 } (1-10)

where Im(z) stands for the imaginary part of z and u(t) is the complex envelope
u(t) = /S+ ni(t) - J nQ(t) (1-11)

where j = /=I. The envelope p(t) is given by

2
o(t) = 2lu(t)] =¢{E’§+ nI(tﬂ +n8(t)} (1-12)

Since n and nQ (and, thus, p(t) also) are bandpass processes with
bandwidth $B/2, by invoking the (stochastic) sampling theory, they can be rep-
resented as samples taken at time intervals separated by AT = 1/B. In other
words, a valid simulation of the integration process (I-8), from which the de-
tector output variable Y is derived, is the discrete-time summation

G
1 2(k
Y = I-13
o, 2, () (1-13)

where G = BTH is the number of samples to be accumulated over the hop time TH.
The discrete-time simulation (I-13) is equivalent to the actual process (I-8)
in the sense that, if the sample values r(k/B) are taken from the actual band-
limited analog signal r(t), the discrete system outputs at the sample time
instants (in this case, after G = BTy samples have been accumulated) will be

: identical to the analog system output at the same instants*. The noise samples
; of n and nQ input to the discrete-time simulation model can be taken to be
uncorrelated and, thus, independent. This assumes that the impulse response of
the bandpass filter preceding the waveform processor has zero crossings at 1/B.
One BPF response which will satisfy this assumption is the ideal response

1 Iw - wo‘ < 8/2
H(w) = (1-14)
elsewhere

o

*Reference A. Papoulis, Signal Analysis, McGraw-Hil1l Book Company,
1977, pp. 25-27.
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This ideal response is closely approximated by actual BPF's with sharp cutoffs
which will probably be the case in actual radiometer implementations.

Table I.1 summarizes the theoretical predictions on the radiometer
output statistics which are required to compute SNRO. They are given here as
functions of BTH and S/NOB. The results summarized in this table are those
derived from the discrete-time model, which is of interest when calibrating
the accuracy of the simulation.

Table 1.2 summarizes the radiometer simulation results. It is ob-
served that the simulation results agree very well with the computed results
from theory (with SNRgy error < 0.25 dB in 200 trials).

Based on the simulated results of the means and variances of the
radiometer output under H0 or Hl’ the probability of detection (Pp) of FH sig-
nals by the radiometer technique is computed by (I-7), for each desired proba-
bility of false alarm CPFA)’ as a function of input SNR vi,. The results for
BTH = 100 and BTH = 1000 are summarized in Figures I.2 and 1.3, respectively.

4.0 AUTOCORRELATION TECHNIQUE SIMULATION

In the autocorrelation technique, the waveform processor output Y is
characterized by the following operations:

6
Y = > aM (1-15)
& A

where wk is the squared value of the envelope of the autocorrelation function
Rr(r) of the received signal r(t) at t = k/b, and.ak's are weighting coeffi-
cients

(Th - k/B)™2 if k<26

(I-16)
0 if k> G

where G = BTH and » is a positive fraction < 1, which serves to truncate the
sum (I-15) to (A BTy - 1) terms. The autocorrelation function R.(t) of the
bandpass signal r(t) with complex envelope u(t) (see (I-9), I-10) and (I-11))
is given by

PR A PP
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" Table I.2. Comparison of Radiometer Simulation Results to Theory;
‘ (200 Tria]S)
{ ®
N (a) BTH = 100
.
E; Input SNR -20 dB -10 dB -5 dB
\_: l
. or STihnfu()]raytion Theory |Simulation{ Theory {Simulation] Theory |Simulation
XY
S
_: (Y [H,) 4.00 3.96 | 4.00 4.01 4.00 3.96
2
“
2 ] J(Y[Hl) 4.04 4.00 4.40 4.41 5.27 5.22
:; C
';; var(Y[Ho) 16.00 15.96 16.00 15.63 16.00 15.96 -
.: . ( 6 \
A var(Y|H;) - 16.32 - 20.29 - 25.54 :
\ :
\' :
:.:_' SR, -20.00 -20.14 0.00 0.25 10.00 9.98
3
Ny © : )
- (b) BTH = 1000 K
- Input SNR -20 dB -15 d8 -10 d8B 0
g ThEOI‘y . . . . . . -
. o or Simulation Theory ([Simulation| Theory |[Simulation| Theory |[Simulation
)
&(v{H,) 4.00 4.003| 4.00 4.003 | 4.00 4.003
e(Y|Hl> 4.04 4.044 4.126 4.132 4.40 4.407
- )
f_l var (Y]HO) 16.00 16.14 16.00 16.14 16.00 16.14 .
¥ .
- var (Y|4, - 16.20 - 16.69 | - 18.57 Y
«“ r |
:; SR, (dB) -10.00 -9.73 0.00 0.14 | 10.0 10.06 »
\ r
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Jugt :
R.(1) = Re{Ru(t) e 0 } (1-17) ‘
where Ru(r) is the autocorrelation function of u(t): e
T, :
Ru(t) = u*(t) u(t-t)dt (1-18)

0

- e e

Since R (1) is itself a bandpass function of ¢, the envelope of R.(1) is lRu(r)I.
Thus, we have

2 I
2 2 T '
- k _ k - H k - .
wex RS = RS - L e ofe - Bae (1-19) ]
k/B !
Now, since u(t), given by X
|
u(t) = /5 +ng(e) - § nglt) (1-20) Y
X
is bandlimited to B, the simulation of (I-19) can again be performed by a :
discrete-time model similar to that used in the radiometer simulation. The
discrete-time model is characterized by the following equations: ;
{
e 2
1 .
W, = |z 2 u*(2/Blu[(2-k)/B] (1-21)
k B =k
Y § W (1-22) :
= a I_ \
k=1 k k !,
and A
; B \?
: ()  ifx<as :
; ak = (1‘23) E
r LS 0 if k > G
¢ 0y
\ )
3 {
:
b4 & 3
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: The mean values of Hk and, thus, Y, under either hypotheses Ho or Hl’

[ . can be computed relatively easily from the discrete-time equations (I-21), (1-22)

" and (I-23). These theoretical results are summarized in Table I.3.

E The variance of W, and, thus, Y, is difficult to compute exactly, how-

ever, due to the complexity of wk. (Computations of expected values of products
'\" & of eight Gaussian random variables are required here.) Under hypothesis HO’
the sum in Nk of (A-21) can be written as

AR N

. G

N £ £-k - .

by zgk u*(g) v = (N1 * Ng) * 3(Mgq - Nqu) (1-24)

'J

d

‘ where Nyp, Nogs Niq and No; are the sums defined by (with k > 1):

i : G

: Nip = gk ny(2)n (2-k) ; Nog = Z nQ(l)nQ(l-k)

-

T S ng(Dng(8-K) S m(Ong(t-k)  (1-25)

N = ny(2)n,(2-k ; N = n ny (£-k 1-25

P

” The above noise terms are zero mean, with variance (G-k)(NoB/Z)Z. They are un-

! & correlated. For k << G, they are sums of a large number of independent random
. variables. Thus, for k << G, they are, to a good approximation, Gaussian. We
) can therefore write Hk as

\

N )
- . (1 2 2

4 e = (g) (" + ng’) (1-26)

where na and ng are given by

and are, to a good approximation, independent Gaussian random variables them-
selves, with mean zero and variance 2(G-k)(NOB/2)2. Thus, W, is a squared Ray-
leigh random variable, to a good approximation. The mean square of Nk is equal
to
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Table I.3. Theoretical Relationships of the Mean Autocorrelation Detector
OQutputs as Functions of G = BTH

12

& (| Ho) (8) (e-)Ng®)’

'f"J

& (W [Hy) (Bl')z 52{(6'”2 ! (G-k)(ngg)-llg +<N—:F>-l:l}

AG

e(Y|Hp) CNQB)Z 2

k=1

¥ .

RS ’4‘-

-1] AG
#0114y %) ] 3 (ﬁ)}

#(YIH) -8 (VIHy) | A6s? + 25N B Aze (g) = 26 + 2( )‘1 tnfly)
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a <
::: 114
o 2 oMoB\* /1,4 n? 2. b :
( ewS’) = 326-0%=-) (5 = 25) (6-K°Ne8) (1-28)
\)
3 The variance of Nk under H0 can thus be written as (see Table 1.3):
>
B
N 2 4 X
- var(W) = &(WZ) - E(wk)] = (§) G-0? (vi)* (1-29) E
LS
' - It can also be shown that wk's are uncorrelated (thus, independent). Based on |
S this approximation, the variance of Y in (I-22) can be written for HO as: ,
0 :
“»
2 e A6 4 A6 2 -;
B 1 4
: var(Y[Hg) = kgl (x) var(w) = 2 (z2x) (NoB) (1-30) i
o ) ) ;
: z
f Combined with the results in Table 1.3, we finally obtain an approximated for-
. @ mula for the autocorrelation detector output SNR (for the discrete-time model):
4 .
od
W] 2
AG
. 2 1
E Ees + 2SNB kZ1 (ﬂ):l _
SNR0 = . G " > (1-31) )
\
> (NOB) kzl (L'-T)
: b
. 2 1 2
¢ AT EG*m * Zln(ﬁ)] ]
: H X
X X :
“o LY
\' LY
v Again, these results are summarized in Table I.4 for easy reference. For cases ]
% when Gy, = >> 2/a £n(1/(1-1)), where 0 € A < 1 (i.e., large BTy products), the 2
3 improvement of the autocorrelation technique over the radiometer approach is 2
given by the ratio a
f‘ Y
)|
y sNR.Sorrelation R
.u 0 2 L)
X radiometer A(1-1) (GYin) (1-33) 2
« SNR0
‘( c
- ]
. ;
T -

l“,l [l N 4 X0 l
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b & Table I.4. Autocorrelation Technique Detector-Output SNR;
b Theory for the Discrete-Time Model

N e(YIH) -&(Y|HY : sz{xw 2<N§F>-l zn(ﬁ—l)}

- var(Y|Hy) : é(ﬁ)(N@)"'

. 2 1 1]2 A
3 Autocorrelation -8 Yin E‘GYin 2 z"(ﬁ):l N

: . A 4l
& Output SNR0 E I-X:]F 3

Radiometer Technique 2
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It is of interest to note that, for these cases, the optimum choice of A (the
summation truncation factor) is approximately = 1/2. For A = 1/2, the improve-
ment of the autocorrelation technique over the radiometer approach is given by

correlation
SNR0

SNR radiometer
0 A=1/2

(The exact result is given in Table I.4 for all i.)

Tables I.5 and 1.6 compare the simulation results to the theoretical
predictions with Gaussian approximations on variance calculations. The follow-
ing observations can be made:

(1) Simulation results agree exceptionally well with theory for the
mean values of the correlator detector outputs for all values of G, Yin and a.
This is true since the theory for this part of the calculations is exact.

(2) Simulation results show that the variance of the detector output
Y under H; can be quite a bit larger than that under Hg for high Yin values.
Also, simulation results on the variance of Y is generally larger than the ap-
proximated theoretical predictions for A > 0.1, where Gaussian approximations
used in computing the variance of Y began to lose validity.

Based on the autocorrelation detector mean and variance simulation
results, the probability of detection versus Yin for various PFA settings are
computed. These results are summarized in Figures 1.4 and I.5. The improve-
ment in performance of the autocorrelation technique as BTH increases from 100
(Figure 1.4) to 1000 (Figure 1.5) is apparent. The truncation factor A in Fig-
ure 1.4 is 0.5, while that in Figure I.5 is 0.1. The performance is relatively

insensitive with respect to A as long as A is > 0.1 and is < 0.8. This A depen-
dence is illustrated in Figure 1.6, where the probability of detection is plotted

against A for various PFA(IO'Z, 10-4 and 10-5) settings and at various Yin (-5,
-10, and -20 dB) for the case BTH = 100. Thus, we can regard Figures 1.4 and
[.5 to be the representative performance of the autocorrelation technique for
BTH = 100 and 1000, respectively.

= 3 (5)° (1-33)
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* -
5 Table I.5. Comparison of Autocorrelation-Detector Simulation Results X
2 to Approximated Analysis N
g @ (a) BT, = 100; A= 0.01

“

- Y;, (d8) -20 dB -10 d8 -5 dB _
k.. Theory ' .
: . or Simslation Theory |Simulation| Theory (Simulation]| Theory |[Simulation

? &(Y[Hg) 0.38 0.378 0.38 0.392 0.38 0.384

. 8(Y|H1) 0.39 0.390 0.82 0.826 4.2 4.24 »
" M

¥ var(Y|[Hy) 0.016| 0.0251 | 0.016 | 0.0215 { 0.016 0.021 ;
) »
9
var(Y]Hl) - 0.0274 - 0.0235 - 4.1 :
L .

4 Autocorrelation .
$ Detector -21.1 -22.5 10.74 9.42 29.64 28.57

3 SR, (dB)

2
. B

-1 »
> (b) BT, = 100; = 0.5 ¢
- . ¢
2 @ Yin (dB) -20 B -10 B -5 dB

s

“: or Smﬁ?;{ion Theory |Simulation| Theory | Simulation| Theory |Simulation h
.',f &(Y[Hg) 2.7 2.76 2.7 2.69 2.7 2.695

a\ »
:: JCYIHI) 2.786 2.84 5.22 5.22 24 23.75 E
2 . var(Y| Ho) 0.156 | 0.6 0.156 0.633 | 0.156 0.708

q

» var(Y[H,) - 0.665 - 6.22 - 91.4

N :
¢ . X
24 Autocorrelation ;
‘ & Detector -14.56 -19.5 16.0 10.04 34.6 28 N

SNR0 (dB)

N

W ! :
)
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Table I.5. Comparison of Autocorrelation Detector Simulation Results
to Approximated Analysis
(c) BTH = 1000; A = 0.1
Yin (dB) -20 dB -15 dB -10 dB
Theory Theory |Simulation Theory |Simulation| Theory - Simulation
or Simulation Y y Y ;
&Y Hy) 0.417 ' 0.419 | 0.417 ' 0.419 | 0.417 @ 0.42
&Y [Hl) 0.47 0.472 0.84 . 0.863 4.46 4.57
var(Y|Hy) [1.76 x10™ 2.61x1073 1.76x1073| 2.6 x1073/1.76 x 1073 2.61x107°
-3 -2
var(Y[H;) - 4.97x10 - 5.34 x 10 - 1.41
Autocorrelation
Detector 1.16 0.17 20.06 18.76 39.7 38.2
SNR0 (dB)
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RELATIVE COMPARISON OF RADIOMETER AND AUTOCORRELATION TECHNIQUES

IN DETECTING FH SIGNALS

Relative performances of the radiometer and autocorrelation techniques
in detecting FH signals can be compared two different ways: (1) their detector
output SNR (as defined in (I-1)), or (2) their operating characteristics Pp and
PFA (in particular, in terms of the required input SNR Yy, for the specified Ppp
and PD)'

Table 1.6 compares the two techniques in terms of their respective out-
put SNR's as functions of BTH and Yin® As shown in Table 1.6, the SNR0 of the
autocorrelation technique is significantly improved over that of the radiometer,
especially in large BTH cases and with high Yin® In typical systems, BTH is
Targe while v, is small (BT, = 1000, Y, = -20 dB). In that case, the autocor-
relator's output SNR0 js still = 10 dB over that of the radiometer. As shown in
Table 1.6, the theoretical prediction on SNR0 improvement agrees very well with
simulation results. Thus, this relationship can be described, to a very good
approximation, by the equation (see Table I.4):

SNR autocorrelator
0

2
SNR radiometer = (IKA)E‘GYM + 2 Zn(—l—%)] (1-35)
0

Equation (I-35) indicates that this improvement, for a fixed A, is essentially
~(G Yin)Z, or YHZ.

A more detailed evaluation of the relative performances of these two
approaches, which is probably more useful in terms of actual system design, is
to compare their respective required input SNR (rin) for a specified set of PFA
and PD' These data can be extracted from Figures 1.2, 1.3, I.4 and 1I.5. The
results are plotted in Figures I.7 and 1.8. The relative improvements of the
autocorrelation approach over that of the radiometer, in terms of required Yin
to give specified PFA and PD’ are summarized in Table I.7.

.-‘ r,'r.,r‘,r ' T

-
")

NS
AR

XA

..,.,..,
R b NN

R R



Table 1.6.

(a) BTH = 100; 2 = 0.1

Relative Comparisons of Detector Output SNR's

Simulation

Radiometer
SNR0 (dB)

Autocorrelation
SNR,, (dB)

Improvement of

Autocorrelation

over Radiometer
in SNRg

Theoretical Prediction

of Autocorreilation SNRO:

Improvement Over
Radiometer

i
I
1]

-20.14

-22.5

-2.36 (dB)

-1.1 (dB)

0.25

9.42

9.17

10.74

9.98

28.57

18.6

19.64

(b) BTH = 1000; A = 0.1

Simulation

Radiometer
SNRO (dB)

Autocorrelation
SNR0 (dB)

Improvement of

Autocorrelation

Over Radiometer
in SNR0

Theoretical Prediction
of Autcorrelation SNR0
Improvement Over
Radiometer

-9.73

0.17

9.9 (dB)

11.6 (dB)

A R

0.14

-~

18.76

18.62

20.06

10.06

38.2

28.14

29.7
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Table I.7. Relative Improvement of the Autocorrelation Technique Over the
Radiometer Approach in terms of Required Input SNR v,
For Desired PD and PFA Performances
Improvement of Autocorrelation Technique
over Radiometer (dB)
BTH PFA
= 0.8 PD = 0.7 = 0.6 PD = 0.5
1079 5.5 5.5 5.6 5.7
100 | 1073 4.0 4.4 4.6 4.8
107! 2.7 2.8 2.9 3.0
1073 8.3 8.4 8.4 8.5
1000 | 1073 7.0 7.1 7.3 7.5
1071 5.3 5.4 5.4 5.5
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APPENDIX J
STATISTICAL CHARACTERIZATION OF NOISE PROCESSES
n¥(t) AND ng(r)

Let
n;(‘t) = ui(‘r) cos wy T = 62(1') sin W T3 k=1,...,M
and
M M
HB('t) = > BI(r) COS wnt + 2 BQ('r) sin wat
0 K1 k 0 K51 k 0
where
aI(r) = [TH c(t) COS(Aw t-¢ )dt
k k k
T
T
(!(kJ(‘l') = f H C(t) Sin(Awkt-¢k)dt
T
T
BIE(T) = f H c(t-1) cos(Amkt-¢k)dt
and '
T
62(1) = / H c(t-1) S'In(Awkt-q;k)dt

T

(9-1)

(9-2)

(v-3a)

(J-3b)

(J-3c)

(J-3d)

with Buy = wy - Wy Equations (J-1) through (J-3) are also given by (5-42) and
(5-43). First, since c(t) is a random code with #{c(t)} = 0, it follows that the

noise processes in (J-1) and (J-2) are zero mean, and that

var%ﬂ(r)‘ = var?ei(r)i = 3’((:{(1))2‘

)

e LR TR T S L o L T AT A 1 T . L A 4 A AT Lt 4 e A L
8 e ..’t I N .. A4 .cl.\ B "'\‘.’ s ‘K.'"" 2NN AN KT

(J-4)

]
4
)
[J

[ AL

 quod 2. -

P Al R ad W =

¥ =gy

Ay

> - -
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We shall first establish (5-47), i.e., claim (a) in section 5.2.2. :
° We have from (J-3a) that -
oy (MTc) =/ c(t) cos[:(mk)t - ¢€Idt = nZ'm Crtl COSLCAwk)t - ¢|;Jdt
- mTc nTc
N-1
A 2z Cnel In+1 (J-5)
d where Cnel is the (n+1)th code chip and
s (n+1)Tc '
In,,_1 £ cosl:(Amk)t - mzldt (J-6)
G nTc
Let ¢ = [cl,...,cN:l. Then,
* c(lmr)z - 1¢ ) $
4 ("Te) o) %] oy 1CTD) | o
N-1 N-1
() = -
%k J—C-"k 3 nzm n'z=m Cn+1 Sn'41 Ine1 Tnien (3-7)
But
G
1 , if n=n'
&4c C.h = § , =
{"“1 n *1} nn 30 , Otherwise
|
1~ which reduces (J-7) to
2 N-1 ' N-1
63aImT $ = & ; 12 $= & 312 % (J-8)
. (k( C)) 0" an n+l nzm ¢ | M
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PN
—

3N

+
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—
n

& nT. nT.
2
n7T 1)T
= (3) / T cos(Augt)dt] + f (1T sin(aut)dt) | (3-9)
nT nTc
But
b w)b

5/ cos(Awgt)dt = (—Al;) sinx E:’;a = (KL—)Ein(Aw)b - sin(Am)a:l (J10-a)

and

Jb sin(awgt)dt = (%)E:os(m)a - COS(M)EI (J10-b)

Upon inserting (J-10) into (J-9) and combining with (J-8), it follows that

2 1 N-1 2
a{(ak(mTc)) } = W an (sin(n+1)(Awk)Tc - sin "(A"’K)Tc)

+(cos n(aw T, - cos(n+1)(Amk)Tc)2]

] N-1 2 SiiE—mB——zTc]
= W n§m [2 -2 COSCAmk)TJ = CAmk)z (N-m)
or
Y T L) LG T
G{(akaTc)) } = — Sa I:CAwk) -ZEI (9-11)

which is (5-47).

y LN DS TN 5 IS I T T )
™ vk e A \

(n+1)T, )T, 2
&, (cos & cos(Aw t)dt + sin ¢, sin(awkt)dt
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We shall now proceed to prove claim (b), namely, that each noise

l ® process n:(r);k=1, ,M and no(r) have uncorrelated (and, by the Gaussian assump-
. tion, independent) inphase and quadrature components. From (J-3a) and (J-3b), we
A can write
¢

. al(c) = Al cos g + A sin g (-12a)

|

: and

K

0 Q) = ad Al si (J-12b)
T = COS ¢ - sin ¢ -

R o o k oS & = A K

where we define the random variables AQ and Ak as

‘Aa I T
N Ay = f c(t) cos buy t dt (J-13a)
Ny T
b and
o Q Ty
. ) Ak = / c(t) sin Bu t dt (J-13b)
T
_'4
Thus, from (J-12),
.
P . I,,.Q 3 1,Q 2. .2
. J%Gk('r)ak(‘r)§ ngccbkl&;ak(r)ak(r)%% = JszAkAk %k%cos ¢ -sin ¢k§
o)
h
ﬂ
E l:(AQ) (Ak)ﬂ-%k{simk cos¢k£€
-
[ RS 2 2
2 - %;(Ag) . (All(u
3 = ¢£§AkAk§e¢k§cos 20} + = - J¢kis1n 20,4 =0 (3-14)
L~
‘ ¢ which proves the uncorrelatedness of ak('r) and Ch ('r) In a similar manner,
5 Bk(t) and BQ(t) are shown to be uncorrelated. Furthermore, Bk( t) and By ('r) for
3 k#m are a1so uncorrelated since they correspond to independent phases o and O
lf This implies that the random variables
‘l
; § o) S %)
8, (1 and BT
. k=1 K K=1
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which constitute the inphase and quadrature components of ng(r), are uncorrelated.
This concludes the proof of claim (b).
The proof of claim (c) is based on the simple fact that

slai(x) ()} = 03 kmig=1Q (9-15)

since ¢, and ¢, are independent (see (J-3)). Finally, in order to substantiate

claim (d), we look at n":(r) at t=0and t = T.. Then,

T T
a,f(o) / H c(t) cos(Amkt - ¢k)dt = f € c(t) cos(Aukt - ¢k)dt + a'{CTc)
0

0

“i(Tc) (J-16)

n

since the first term (integral from 0 to Tc) is negligible compared to the
(N-1)T, integration involved in ai(‘fc) Thus, o (0) 1s almost equal to (i.e.,
very corre1ated with) akcrc) and the same holds for ak(t) It follows that

(1) is a highly correlated noise with respect to the T time interval. On
the other hand,

T
BIE(O) = f € ce(t) COS(Awkt-¢k)dt (9-17a)
0

while

T ,
Bicrc) = / H c(t-TJ) COS(Awkt - ¢k)dt

c
Ty-T
o [T ) onf + - o)
0
= B&(O) cos(Awch) - BE(O) S‘in(Awch) (J-17b)
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Thus, the degree of correlation between ni(O) and Bé(Tc) depends on the phase
shift aw, T.. If, for instance, (fo-f| )T, = 0 or 1/2 or 1, then Bi(o) and 3{ Te
are highly correlated while, if (fo-fi)T. = 1/4 or 3/4, then B&(Tc) z BE(O),
which is uncorrelated with Bk(O)! Since similar rules hold for e&(r), we con-
clude that the correlation time of the noise ng(r) varies with (Afk)Tc. For the
particular case of one interfering tone on the signal frequency, i.e., f1 = fO’
it is concluded that ng(O) =z nf(Tc), resulting in a highly correlated noise
(which is a favorable case here).
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APPENDIX K
PROOF_OF EQUATION (5.52)

From (5-50), we have that

o1y’ i
= _’ZH_' 1+ 2y 1(1 + 27 a1,nonn):|

T N

c
a = cos ¢; 2 C
1,norm (l'H) 1&g

Clearly, "{al,norm} = 0; which, upon substitution in (K-1), immediately yields

Furthermore, from (K-1) and (5-52a),

[}

T 2
sem)* vt (ﬁ) ()4

since var{cos ¢1} =1/2 and the cn‘s are independent, so that

s o, &
S, .J..JkJ\} -

‘!

O a0

5" - -

a
-

N
var?nél °n€ = Nowar {c } = N

If we recall that N 2 TH/TC, we conclude from (K-3) that

>

2csT.
var{AlHl} = —%’Ii)—

i.e., (5-52b).
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APPENDIX L
RADIOMETER PERFORMANCE FOR THE FH/DS CASE WITH RANDOM TONE INTERFERENCE

The radiometer output Yrad = y(0) can be written . s
Mo
Yoad = STH * MI Ty + 24[ST; kgl ak(O) (L-1)

where I1 is the power per tone, so the total power for M tones is I = MIl. In
our formulation, M is a random variable, taking values in the set [1,2,...,Mpax]
with equal probability in each hop. Conditioned on M, the mean and variance of
Yrad are

&Y aalMt = STy MIT, = (5 + MIDT, (L-2)

and

MZ = 4sI, él a{(«ﬁ(m)z} (L-3)

)

where we have used the fact that o« (0) and aI(O) are uncorrelated for k#m. (See
Appendix J.) Furthermore, the second moment of ak(o) is given by equation (5-47)
which, upon substitution in (L-3) for m=0 yields

2
var{YradlM} = 4sL 8 <§1 a§(0)>

arlVagM) = 21 WP 5 sellacryrfT] = LT T L (L)

where

4.2
Lw &3 s Er(fo-fk)T;l (L-5)

and the fact that TH = NTc has been used.
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i L2
_f Under the Gaussian assumption for Yrad (conditioned on M), we can
{ ° easily derive the conditional detection probability under h}pothesis H1 as
‘s
- Yo - (S#M14)T
< rad _ _ 0 1)'H
\ VAIMANE)
y where Y0 is the detection threshold and equations (L-2) through (L-5) have been
a used. Clearly, under Hy, the first and third terms in (L-1) disappear, so that N
R
E Yrad MI; Ty under Hy (L-7)
'\
~ \
S . with probability 1. This implies that the conditional false-alarm probability
¢ ¢ is two valued:
2 :
& 1, if MI.T, > Y t
3 PF:TM ’ the e (L-8) 3
1Y .
-‘ 0,1fMIlTH<Y0 ;’
| \
- In deriving (L-8), we have implicitly assumed that the detector decides Hj K
ii whenever the radiometer output Yrad is exactly equal to the threshold Yo. E
) If we now insert the equidistribution assumption about M between 1 and
g Mnax® We can average (L-6) or (L-8) with respect to M in order to obtain the .
¢ overall pT2d ang prad. Thye '
N D FA * ’
) M N
e -
- rad _ rad 1 ax: Yo (S+M11)TH
e PD = JM PD|M ' I Z Q (L-9) ;
A max M=1 \/ESI T,T L(M) \
- 1'H'c b
. ;
o A
.'(- while ‘
~ )
N rad Mo :
prad - 1. (L-10a) '\
E FA IE&X '
L ,
Q: where MYO is the largest integer not exceeding YO/IITH’ i.e., 1
N E
X ¢
> :
& 3
f .
y
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X :
.
> L3
‘ Y Y :
N 0 . 0 N
(L I HJ o < Mha :
\ MY = (L-10b) .
"y 0 ' Yo ]
) Mnax if IlTH > Mrax A
3 :
\ 6 I ns n rad
n (L-10b), |-| denotes "integer part of." Furthermore, for a desired Pr,~ level,
1 Myo can be calculated. Then, Y0 should be chosen at the lowest allowable level by
'{ in order to maximize Pgad. Clearly, this choice is p
= = - ra -
; Yo = My I Ty Mmax(l PEA )IITH (L-11) \
: §
q‘ »
& - We note that, in the case treated here, i.e., no thermal noise, P;:d can assume -.
4 only discrete (quantized) values, as dictated by (L-10a). In other words, PFRd 4
Z._- can only be of the form :
: ;
«
‘{U Pr‘ad = ko 1. k=0,1 % (L-12) : ‘.
.‘ FA ﬁ ax ’ sdgesey X ‘
3 We can now combine (L-9) with (L-11) in order to get the radiometer's "
AP operating characteristic as R
_prady _,_ (S
= rad 1 "hax | "max (1 PFA ) " (-IT)
: DT M 3 Vi (o) ;
- ‘/2(1—) T, L(M)
2 1
N
E If we let v, denote the signal to single-tone power ratio 3
Y r )
¢
- 4 S N ]
A L ‘IT (L-14) '
v [
*: A U
o and recall that N = TH/Tc’ we conclude that 4
]
4
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M rad)
1 ??x Q [- Mmax(1 “Pea )Y M

Mmax M=1 -1 M 2
2y N7 2 Sa Er(fo-fk)Tc:]
k=1

rad

rad _ . b=
with PFA k/Mmax’ k 0,...,Mmax

(L-15)

As an interesting
i.e., the DS code rate is much larger than the FH rate.
respond to T  + 0 (for a fixed Ty), we conclude that

Since th

M

M
. 2
1im ZSaErf-f T:[=
Noto  K=1 (fo~Tile kz=1 T 0

since 113 Saz(x) = 1. Therefore, the whole denominator of the Q(
X

(L-15) tends to zero,

ZYI’M
1im - = 0
N-»o
which implies that
1 iem>m o (1-prad) oy
lim Q(+) = max( FAd 1
N>+ ra

Therefore, from (L-16) and (L-17),

rad _ Mmax " Mpt1l _ Mp-1
1im PD = M = 1 - —
Nt max max
rad
where My is the minimum M such that M > (1 - PFa%)

can be rewritten in the final, more compact, form, i.e.,

VYW PP P n.-,l‘.- .-.-.._. -y -~ o . - >
LA A ot g Ley o N (Y AN VRS

OISR N R

side result, let us consider the 1imiting case where N+te,

is would cor-

1im SazEr(fo-fk)Tc:l = M (L-16)

) functions in

(L-17)

(L-18)

- v,- Equation (L-18)
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rad
I Y R R
1im P 1l -

D
Nt Mmax

(L-19)

So, for instance, for Mmax = 2, it is easily derived from (L-19) that

172 if PFA =0
d =
lim pr@ -
Not D ‘ 1 if PFA 1/2
Yl"o
as expected. More generally, for an arbitrary Mmax’

lim Prad N Prad 1

Notoo D FA ”max

Yl"o

The case treated in the text, Mmax= 1, is slightly different from
that which is presented in this appendix. In particular, let us assume that

in each hop, either none or one interfering tone can be present with equal
probability, i.e.,

Pr(M=0] = pPr[M=1] = 172 (L-20)

Then,

Y +1-M x( 1- P"“ﬂ w21)

o

rad _ max(
Pojp = @

rad) _l=1-q
|

where

S

and we have assumed that fl =f (interference centered on signal frequency).

Here, M =1. Furthermore, if we wish to have P;:d 2 0, we should set the

AN

> od e Tan’

.-pe_»
-

—0; "‘r-l... LA qﬁ“-a‘. -

)

. .
Ld

- -
s 0 T P

AR

R IR RN AR S P AR 4



&

-----

Lé

threshold Y, = IT . Then, under signal present (Hl) but tone absent (M = 0)
conditions, it follows that

Y ST (M=0) (L-23)

rad H

Clearly, this output will result in an H1 (correct) decision if and only if:

STH > Y0 = ITH & S>] &> i >1 (L-24)
Thus ,
1, ify, >1
oMo * : (L-25)
0, otherwise
For the same desired level PF:d = 0, (L-21) yields
rad _IL
i1 = 1-0 ¥z (L-26)

The final detection performance is the average between (L-25) and (L-26), and
is given by

1 -3 TYI i

- 2.Q f i >1
rad _ 1/yrad rad -

Pp 2(”o|n-1*"o|n=o) = ~

rad _ 1 Y1

PFA 0 2-(1 -Q;._Z]) if YI< 1

as per (5-55).




APPENDIX M
SIMULATION OF THE FH/DS CASE IN RANDOM TONE INTERFERENCE

.
»
»
5
*

The received signal is given by
r(t) = /25 c(t) cos wyt + V2T cos(wjt + ¢1) (M-1)
Recall from the text that
N = R/Ry (M-2)

with Rc representing the code rate and Ry being the hop rate. The real-time
autocorrelator is specified by

T
y(t) = f Hr(t) r(t-t)dt 0< < T'_| (M-3)

T

Letting wy = W) with unknown phase difference (N and putting (M-1) in (M-3) yields

y(r) = Sy(x) cos wyr + I(TH-T)COSmlt + /5T (n‘l’(r) + ng(r)) (M-4)

with
nT(r) = a{(t) cos w; - ag(r) sin wy T (M-5)
nS(‘t) = B{(T) cos wyT + Bg(‘t) sin woT (M-6)
I Ty
al('r) = cos ¢; f c(t)dt (M-7)
T
T
a?(’r) = -sin ¢; / H c(t)dt (M-8)
T
I L
Bl(r) = cos ¢, / c(t-t)dt (M-9)
T
Q Th
Bl(r) = -sin ¢ / c(t-t)dt (M-10)




